scholarly journals Effect of glycerol and sorbitol on the mechanical and barrier properties of films based on pea protein isolate produced by high‐moisture extrusion processing

Author(s):  
Sophia Faust ◽  
Julian Foerster ◽  
Martina Lindner ◽  
Markus Schmid



Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1517
Author(s):  
Mika Immonen ◽  
Angga Chandrakusuma ◽  
Juhani Sibakov ◽  
Minna Poikelispää ◽  
Tuula Sontag-Strohm

Grain protein fractions have great potential as ingredients that contain high amounts of valuable nutritional components. The aim of this study was to study the rheological behavior of destarched oat and pea proteins and their blends in extrusion-like conditions with a closed cavity rheometer. Additionally, the possibility of producing fibrous structures with high-moisture extrusion from a blend of destarched oat and pea protein was investigated. In the temperature sweep measurement (60–160 °C) of the destarched oat protein concentrate and pea protein isolate blend, three denaturation and polymerization sections were observed. In addition, polymerization as a function of time was recorded in the time sweep measurements. The melting temperature of grain proteins was an important factor when producing texturized structures with a high-moisture extrusion. The formation of fibrillar structures was investigated with high-moisture extrusion from the destarched oat and pea protein blend at temperatures ranging from 140 to 170 °C. The protein–protein interactions were significantly influenced in the extruded samples. This was due to a decrease in the amount of extractable protein in selective buffers. In particular, there was a decrease in non-covalent and covalent bonds due to the formation of insoluble protein complexes.



LWT ◽  
2017 ◽  
Vol 84 ◽  
pp. 511-519 ◽  
Author(s):  
Laura Laguna ◽  
Pierre Picouet ◽  
M. Dolors Guàrdia ◽  
Catherine M.G.C. Renard ◽  
Anwesha Sarkar




2019 ◽  
Vol 278 ◽  
pp. 665-673 ◽  
Author(s):  
Yang Lan ◽  
Minwei Xu ◽  
Jae-Bom Ohm ◽  
Bingcan Chen ◽  
Jiajia Rao


Author(s):  
Osvaldir Pereira Taranto ◽  
R. F. Nascimento ◽  
K Andreola ◽  
J. G. Rosa

This study aimed to compare the agglomeration process of pea protein isolate (PPI) using water and aqueous gum Arabic solution as binder liquids. Drying air temperature and binder flow rate were set at 75 °C and 3.1 mL/min, respectively. Moisture content, mean particle size, wetting time and flowability were analyzed. Using water as binder liquid, the responses were (4.0 ± 0.4)%, 316.13 ± 16.73 μm, 10 s and free flow, respectively. Aqueous gum Arabic solution provided (2.9 ± 0.5)%, 462.67 ± 51.23 μm, 3 s and free flow as responses. Gum Arabic solution showed to be a more promising binder.Keywords: Agglomeration; Pulsed fluidized bed; Pea protein isolate; Wetting time; Flowability



Author(s):  
Viviane Machado Azevedo ◽  
Ana Carolina Salgado De Oliveira ◽  
Soraia Vilela Borges ◽  
Josiane Callegaro Raguzzoni ◽  
Marali Vilela Dias ◽  
...  

Abstract: Studies have been made to explore the utilization of pea proteins in terms of edible film and coating materials. The reinforcement of biopolymer films with plant-based nanocrystals has been applied in order to improve their performance properties. The objective was to evaluate the effect of the incorporation of corn starch nanocrystals (SN) (0-15%) in pea protein isolate films. Thermal analysis showed that the addition of up to 5% starch nanocrystals increased thermal stability. A 22.3% decrease was observed in water vapor permeability with the addition of SN. Increasing the SN concentration altered the arrangement of the structure to interleaved, in the matrix, as seen in transmission micrographs. This study showed that the use of corn starch nanocrystals as reinforcement in pea protein films had an effect on the films. The incorporation of up to 10% SN is suggested in order to increase the performance properties of pea protein isolate films.







Sign in / Sign up

Export Citation Format

Share Document