Fabrication of hybrid polystyrene‐titanium dioxide with enhanced dye degradation and antimicrobial properties: investigation of the effect of the TEGDMA on photocatalytic activity

2021 ◽  
Author(s):  
Siripan Metanawin ◽  
Tanapak Metanawin
2017 ◽  
Vol 19 (2) ◽  
pp. 56-60 ◽  
Author(s):  
Loghman Karimi

Abstract This study presents a facile approach for the preparation of MoS2 nanosheet decorated by porous titanium dioxide with effective photocatalytic activity. Mesoporous titanium dioxide nanostructures first synthesized by a hydrothermal process using titanium (III) chloride and then the MoS2/TiO2 were prepared through mixing of MoS2 nanosheet with mesoporous titanium dioxide under ultrasonic irradiation. The synthesized nanocomposite was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), and Brunauer-Emmett-Teller (BET) analysis. The results showed that the nanocomposite has mesoporous structure with specific surface area of 176.4 m2/g and pore diameter of 20 nm. The as-prepared MoS2/TiO2 nanocomposites exhibited outstanding photocatalytic activity for dye degradation under sunlight irradiation, which could be attributed to synergistic effect between the molybdenum disulfide nanosheet and mesoporous titanium dioxide. The photocatalytic performance achieved is about 2.2 times higher than that of mesoporous TiO2 alone. It is believed that the extended light absorption ability and the large specific surface area of the 2D MoS2 nanosheets in the nanocomposite, leading to the enhanced photocatalytic degradation activity.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Chin Wei Lai ◽  
Joon Ching Juan ◽  
Weon Bae Ko ◽  
Sharifah Bee Abd Hamid

Today, organic dyes are one of the largest groups of pollutants release into environment especially from textile industry. It is highly toxic and hazardous to the living organism; thus, the removal of these dyes prior to discharge into the environment is essential. Varieties of techniques have been employed to degrade organic dyes and heterogeneous photocatalysis involving titanium dioxide (TiO2) appears to be the most promising technology. In recent years, TiO2nanotubes have attracted much attention due to their high surface area and extraordinary characteristics. This paper presents a critical review of recent achievements in the modification of TiO2nanotubes for dye degradation. The photocatalytic activity on dye degradation can be further enhanced by doping with cationic or anionic dopant.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3948
Author(s):  
Lingfang Qiu ◽  
Zhiwei Zhou ◽  
Mengfan Ma ◽  
Ping Li ◽  
Jinyong Lu ◽  
...  

Novel visible-light responded aluminosilicophosphate-5 (SAPO-5)/g-C3N4 composite has been easily constructed by thermal polymerization for the mixture of SAPO-5, NH4Cl, and dicyandiamide. The photocatalytic activity of SAPO-5/g-C3N4 is evaluated by degrading RhB (30 mg/L) under visible light illumination (λ > 420 nm). The effects of SAPO-5 incorporation proportion and initial RhB concentration on the photocatalytic performance have been discussed in detail. The optimized SAPO-5/g-C3N4 composite shows promising degradation efficiency which is 40.6% higher than that of pure g-C3N4. The degradation rate improves from 0.007 min−1 to 0.022 min−1, which is a comparable photocatalytic performance compared with other g-C3N4-based heterojunctions for dye degradation. The migration of photo-induced electrons from g-C3N4 to the Al site of SAPO-5 should promote the photo-induced electron-hole pairs separation rate of g-C3N4 efficiently. Furthermore, the redox reactions for RhB degradation occur on the photo-induced holes in the g-C3N4 and Al sites in SAPO-5, respectively. This achievement not only improves the photocatalytic activity of g-C3N4 efficiently, but also broadens the application of SAPOs in the photocatalytic field.


2019 ◽  
Vol 92 ◽  
pp. 284-293 ◽  
Author(s):  
Raja Arumugam Senthil ◽  
Meng Sun ◽  
Junqing Pan ◽  
Sedahmed Osman ◽  
Abrar Khan ◽  
...  

2021 ◽  
Author(s):  
Harsha Bantawal ◽  
Sandhya U. Shenoy ◽  
Denthaje Krishna Bhat

CaTiO3 has attracted enormous interest in the field of photocatalytic dye degradation and water splitting owing to its low cost, excellent physicochemical stability and structural tunability. Herein, we have developed...


Author(s):  
Seremak Wioletta ◽  
Baszczuk Agnieszka ◽  
Jasiorski Marek ◽  
Gibas Anna ◽  
Winnicki Marcin

AbstractThis work shows that the titanium dioxide coatings obtained by low-pressure cold gas spraying with the use of the sol–gel amorphous TiO2 powder are characterized by photocatalytic activity despite their partial amorphous content. Moreover, the research outcome suggests that the decomposition rate of organic pollutants is enhanced after long-term exposure to moisture. The condensation humidity test is not detrimental to the continuity and integrity of the coating, but the phase composition of coatings changes—with the exposure to water vapor, the portion of the amorphous phase crystallizes into brookite. The mechanism responsible for the conversion of amorphous TiO2 into brookite is attributed to the water-driven dissolution and reprecipitation of TiO6 octahedra. It has been shown that an additional parameter necessary for the stabilization of the brookite is the oxygen depletion of the amorphous structure of titanium dioxide. Considering the results presented in this paper and the advantages of a portable, low-pressure cold spray system for industrial applications, it is expected that TiO2 coatings produced from a sol–gel feedstock powder can be further developed and tested as efficient photocatalysts.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 112
Author(s):  
Tamás Gyulavári ◽  
Kata Kovács ◽  
Klára Magyari ◽  
Kornélia Baán ◽  
Anna Szabó ◽  
...  

Carbon spheres were applied as templates to synthesize titanium dioxide hollow spheres. The templates were purified with either ethanol or acetone, and the effects of this treatment on the properties of the resulting titania were investigated. The photocatalytic activity of the catalysts was measured via the decomposition of phenol model pollutant under visible light irradiation. It was found that the solvent used for the purification of the carbon spheres had a surprisingly large impact on the crystal phase composition, morphology, and photocatalytic activity. Using ethanol resulted in a predominantly rutile phase titanium dioxide with regular morphology and higher photocatalytic activity (r0,phenol = 3.9 × 10−9 M∙s−1) than that containing mainly anatase phase prepared using acetone (r0,phenol = 1.2 × 10−9 M∙s−1), surpassing the photocatalytic activity of all investigated references. Based on infrared spectroscopy measurements, it was found that the carbon sphere templates had different surface properties that could result in the appearance of carbonate species in the titania lattice. The presence or absence of these species was found to be the determining factor in the development of the titania’s properties.


Sign in / Sign up

Export Citation Format

Share Document