Compartmentalized linkage of genes encoding interacting protein pairs

PROTEOMICS ◽  
2011 ◽  
Vol 11 (7) ◽  
pp. 1335-1339 ◽  
Author(s):  
Saurabh R. Nirantar ◽  
Farid J. Ghadessy
1989 ◽  
Vol 30 (2) ◽  
pp. 123-125 ◽  
Author(s):  
Stephen F. Kingsmore ◽  
Mark L. Watson ◽  
Walton S. Moseley ◽  
Michael F. Seldin

2000 ◽  
Vol 113 (24) ◽  
pp. 4557-4562 ◽  
Author(s):  
A. Takeoka ◽  
M. Shimizu ◽  
T. Horio

gamma-Tubulin has been determined to be a central element of microtubule nucleation and, thus, indispensable for cellular organization of the microtubule. Utilizing the fact that human gamma-tubulin can function in the fission yeast Schizosaccharomyces pombe, we have generated a unique mutant screening procedure which can specifically select mutants of genes encoding gamma-tubulin-interacting proteins. One of the isolated mutants, cs76, turned out to carry a mutation in the alpha 1-tubulin gene (nda2(+)). This result suggests a direct interaction between the alpha- and gamma-tubulins. We located the mutation site in the nda2 gene and characterized the mutant phenotype. Our results demonstrate the importance of the alpha-/gamma-tubulin interaction in microtubule nucleation and should complement previous knowledge.


2017 ◽  
Author(s):  
Shelby S Calkins ◽  
Nicole C Elledge ◽  
Stephen M. Marek ◽  
M B. Couger ◽  
Mostafa S Elshahed ◽  
...  

Members of the anaerobic gut fungi (AGF) reside in rumen, hindgut, and feces of ruminant and non-ruminant herbivorous mammals and reptilian herbivores. No protocols for gene insertion, deletion, silencing, or mutation are currently available for the AGF, rendering gene-targeted molecular biological manipulations unfeasible. Here, we developed and optimized an RNA interference (RNAi)-based protocol for targeted gene silencing in the anaerobic gut fungus Pecoramyces ruminantium strain C1A. Analysis of the C1A genome identified genes encoding enzymes required for RNA silencing in fungi (Dicer, Argonaute, Neurospora crassa QDE-3 homolog DNA helicase, Argonaute-interacting protein, and Neurospora crassa QIP homolog exonuclease); and the competency of C1A germinating spores for RNA uptake was confirmed using fluorescently labeled small interfering RNAs (siRNA). Addition of chemically-synthesized siRNAs targeting D-lactate dehydrogenase (ldhD) gene to C1A germinating spores resulted in marked target gene silencing; as evident by significantly lower ldhD transcriptional levels, a marked reduction in the D-LDH specific enzymatic activity in intracellular protein extracts, and a reduction in D-lactate levels accumulating in the culture supernatant. Comparative transcriptomic analysis of untreated versus siRNA-treated cultures identified a few off-target siRNA-mediated gene silencing effects. As well, significant differential up-regulation of the gene encoding NAD-dependent 2-hydroxyacid dehydrogenase (Pfam00389) in siRNA-treated C1A cultures was observed, which could possibly compensate for loss of D-LDH as an electron sink mechanism in C1A. The results demonstrate the feasibility of RNAi in anaerobic fungi, and opens the door for gene silencing-based studies in this fungal clade.


2005 ◽  
Vol 288 (6) ◽  
pp. H2887-H2896 ◽  
Author(s):  
Fadi G. Akar ◽  
Richard C. Wu ◽  
George J. Juang ◽  
Yanli Tian ◽  
Mirka Burysek ◽  
...  

Heart failure (HF) is characterized by marked prolongation of action potential duration and reduction in cellular repolarization reserve. These changes are caused in large part by HF-induced K+ current downregulation. Molecular mechanisms underlying these changes remain unclear. We determined whether downregulation of K+ currents in a canine model of tachycardia-induced HF is caused by altered expression of underlying K+ channel α- and β-subunits encoding these currents. K+ channel subunit expression was quantified in normal and failing dogs at the mRNA and protein levels in epicardial (Epi), midmyocardial (Mid), and endocardial (Endo) layers of left ventricle. Analysis of mRNA and protein levels of candidate genes encoding the transient outward K+ current ( Ito) revealed marked reductions in canine cKv4.3 expression in HF in Epi (44% mRNA, 39% protein), Mid (52% mRNA, 34% protein), and Endo (49% mRNA, 73% protein) layers and a paradoxical enhancement (41% Epi, 97% Mid, 113% Endo) in cKv1.4 protein levels, without significant changes in Kv channel-interacting protein cKChIP2 expression. Expression of cKir2.1, the gene underlying inward rectifier K+ current ( IK1), was unaffected by HF at mRNA and protein levels despite significant reduction in IK1, whereas canine ether-à-go-go-related gene (cERG), which encodes the rapidly activating component of the delayed rectifier current ( IK), exhibited increased protein expression. HF was not accompanied by significant changes in cKvLQT1 or cMinK mRNA and protein levels. These data indicate that 1) downregulation of Ito in HF is associated with decreased cKv4.3 and not cKv1.4 or cKChIP2, and 2) alterations in both the rapidly activating and slowly activating components of IK as well as IK1 in nonischemic dilated cardiomyopathy are not caused by changes in either transcript or immunoreactive protein levels of relevant channel subunits, which suggests posttranslational modification of these currents by HF.


2003 ◽  
Vol 18 (6) ◽  
pp. 712-718 ◽  
Author(s):  
YATARO DAIGO ◽  
ICHIRO TAKAYAMA ◽  
SEAN M WARD ◽  
KENTON M SANDERS ◽  
MASAYUKI A FUJINO

2004 ◽  
Vol 35 (3) ◽  
pp. 176-181 ◽  
Author(s):  
D. Elleder ◽  
J. Plachy ◽  
J. Hejnar ◽  
J. Geryk ◽  
J. Svoboda

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lu Lu ◽  
Xinying Chen ◽  
Pengkai Wang ◽  
Ye Lu ◽  
Jingbo Zhang ◽  
...  

Abstract Background The CIPKs are a group of plant-specific Ser/Thr protein kinases acting in response to calcium signaling, which plays an important role in the physiological and developmental adaptation of plants to adverse environments. However, the functions of halophyte-derived CIPKs are still poorly understood, that limits a potential application of CIPKs from halophytes for improving the tolerance of glycophytes to abiotic stresses. Results In this study, we characterized the NtCIPK11 gene from the halophyte Nitraria tangutorum and subsequently analyzed its role in salt and drought stress tolerance, using Arabidopsis as a transgenic model system. NtCIPK11 expression was upregulated in N. tangutorum root, stem and blade tissues after salt or drought treatment. Overexpressing NtCIPK11 in Arabidopsis improved seed germination on medium containing different levels of NaCl. Moreover, the transgenic plants grew more vigorously under salt stress and developed longer roots under salt or drought conditions than the WT plants. Furthermore, NtCIPK11 overexpression altered the transcription of genes encoding key enzymes involved in proline metabolism in Arabidopsis exposed to salinity, however, which genes showed a relatively weak expression in the transgenic Arabidopsis undergoing mannitol treatment, a situation that mimics drought stress. Besides, the proline significantly accumulated in NtCIPK11-overexpressing plants compared with WT under NaCl treatment, but that was not observed in the transgenic plants under drought stress caused by mannitol application. Conclusions We conclude that NtCIPK11 promotes plant growth and mitigates damage associated with salt stress by regulating the expression of genes controlling proline accumulation. These results extend our understanding on the function of halophyte-derived CIPK genes and suggest that NtCIPK11 can serve as a candidate gene for improving the salt and drought tolerance of glycophytes through genetic engineering.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4745
Author(s):  
Małgorzata Zakłos-Szyda ◽  
Nina Pietrzyk ◽  
Agnieszka Kowalska-Baron ◽  
Adriana Nowak ◽  
Katarzyna Chałaśkiewicz ◽  
...  

The latest data link the chronic consumption of large amounts of fructose present in food with the generation of hypertension and disturbances in carbohydrate and lipid metabolism, which promote the development of obesity, non-alcoholic fatty liver disease, insulin resistance, and type 2 diabetes. This effect is possible after fructose is absorbed by the small intestine cells and, to a lesser extent, by hepatocytes. Fructose transport is dependent on proteins from the family of glucose transporters (GLUTs), among which GLUT5 selectively absorbs fructose from the intestine. In this study, we examined the effect of four phenolic-rich extracts obtained from A. graveolens, B. juncea, and M. chamomilla on fructose uptake by Caco-2 cells. Extracts from B. juncea and M. chamomilla most effectively reduced fluorescent fructose analogue (NBDF) accumulation in Caco-2, as well as downregulated GLUT5 protein levels. These preparations were able to decrease the mRNA level of genes encoding transcription factors regulating GLUT5 expression-thioredoxin-interacting protein (TXNIP) and carbohydrate-responsive element-binding protein (ChREBP). Active extracts contained large amounts of apigenin and flavonols. The molecular docking simulation suggested that some of identified phenolic constituents can play an important role in the inhibition of GLUT5-mediated fructose transport.


Sign in / Sign up

Export Citation Format

Share Document