Thioesterase enzyme families: functions, structures, and mechanisms

2021 ◽  
Author(s):  
Benjamin T. Caswell ◽  
Caio C. Carvalho ◽  
Hung Nguyen ◽  
Monikrishna Roy ◽  
Tin Nguyen ◽  
...  
Keyword(s):  
2021 ◽  
Author(s):  
Sophie de Vries ◽  
Janine MR Fürst‐Jansen ◽  
Iker Irisarri ◽  
Amra Dhabalia Ashok ◽  
Till Ischebeck ◽  
...  

2013 ◽  
Vol 31 (9) ◽  
pp. 1231-1238 ◽  
Author(s):  
Lindsey N. Micel ◽  
John J. Tentler ◽  
Peter G. Smith ◽  
Gail S. Eckhardt

The ubiquitin proteasome system (UPS) regulates the ubiquitination, and thus degradation and turnover, of many proteins vital to cellular regulation and function. The UPS comprises a sequential series of enzymatic processes using four key enzyme families: E1 (ubiquitin-activating enzymes), E2 (ubiquitin-carrier proteins), E3 (ubiquitin-protein ligases), and E4 (ubiquitin chain assembly factors). Because the UPS is a crucial regulator of the cell cycle, and abnormal cell-cycle control can lead to oncogenesis, aberrancies within the UPS pathway can result in a malignant cellular phenotype and thus has become an attractive target for novel anticancer agents. This article will provide an overall review of the mechanics of the UPS, describe aberrancies leading to cancer, and give an overview of current drug therapies selectively targeting the UPS.


Parasitology ◽  
2006 ◽  
Vol 133 (4) ◽  
pp. 497-508 ◽  
Author(s):  
M. K. ISLAM ◽  
T. MIYOSHI ◽  
M. YAMADA ◽  
M. A. ALIM ◽  
X. HUANG ◽  
...  

Sodium fluoride (NaF) is an anion that has been previously shown to block the moulting process ofAscaris suumlarvae. This study describes moulting and development-specific protein expression profiles ofA. suumlung-stage L3 (AsLL3) following NaF exposure. AsLL3s cultured in the presence or absence of NaF were prepared for protein analysis using two-dimensional (2D) electrophoresis. NaF exposure inhibited at least 22 proteins in AsLL3 compared with moulted larvae (i.e. AsLL4). A further comparison of AsLL4 with those of pre-cultured AsLL3 and NaF-exposed AsLL3 revealed 8 stage-specifically and 4 over-expressed proteins. Immunoblot analysis revealed an inhibition by NaF of 19 immunoreactive proteins. Enzyme assay and immunochemical data showed an inhibition of the moulting-specific inorganic pyrophosphatase activity by 41% and a decreased expression in NaF-treated larvae, indicating its significance in the moulting process. A protein spot associated with NaF inhibition was isolated and identified by peptide mass spectrometry and bioinformatics approaches to be a member of 3–hydroxyacyl–CoA dehydrogenase/short-chain dehydrogenase enzyme families. These results have implications for the identification of proteins specific to the moulting process as potential chemotherapeutic targets.


Science ◽  
2021 ◽  
Vol 371 (6533) ◽  
pp. eaay2784
Author(s):  
Margaux M. Pinney ◽  
Daniel A. Mokhtari ◽  
Eyal Akiva ◽  
Filip Yabukarski ◽  
David M. Sanchez ◽  
...  

The mechanisms that underly the adaptation of enzyme activities and stabilities to temperature are fundamental to our understanding of molecular evolution and how enzymes work. Here, we investigate the molecular and evolutionary mechanisms of enzyme temperature adaption, combining deep mechanistic studies with comprehensive sequence analyses of thousands of enzymes. We show that temperature adaptation in ketosteroid isomerase (KSI) arises primarily from one residue change with limited, local epistasis, and we establish the underlying physical mechanisms. This residue change occurs in diverse KSI backgrounds, suggesting parallel adaptation to temperature. We identify residues associated with organismal growth temperature across 1005 diverse bacterial enzyme families, suggesting widespread parallel adaptation to temperature. We assess the residue properties, molecular interactions, and interaction networks that appear to underly temperature adaptation.


2016 ◽  
Vol 13 ◽  
pp. 70-76 ◽  
Author(s):  
Rahul V Rane ◽  
Tom K Walsh ◽  
Stephen L Pearce ◽  
Lars S Jermiin ◽  
Karl HJ Gordon ◽  
...  

2018 ◽  
Author(s):  
Mónica Lopes-Marques ◽  
André M. Machado ◽  
Raquel Ruivo ◽  
Elza Fonseca ◽  
Estela Carvalho ◽  
...  

AbstractFatty acids (FAs) constitute a considerable fraction of all lipid molecules with a fundamental role in numerous physiological processes. In animals, the majority of complex lipid molecules are derived from the transformation of FAs through several biochemical pathways. Yet, for FAs to enroll in these pathways they require an activation step. FA activation is catalyzed by the rate limiting action of Acyl-CoA synthases. Several Acyl-CoA enzyme families have been previously described and classified according to the chain length of FA they process. Here, we address the evolutionary history of the ACSBG gene family which activates, FA with more than 16 carbons. Currently, two different ACSBG gene families, ACSBG1 and ACSBG2, are recognized in vertebrates. We provide evidence that a wider and unequal ACSBG gene repertoire is present in vertebrate lineages. We identify a novel ACSBG-like gene lineage which occurs specifically in amphibians, ray finned fish, coelacanths and chondrichthyes named ACSBG3. Also, we show that the ACSBG2 gene lineage duplicated in the Theria ancestor. Our findings, thus offer a far richer understanding on FA activation in vertebrates and provide key insights into the relevance of comparative and functional analysis to perceive physiological differences, namely those related with lipid metabolic pathways.


2018 ◽  
Vol 02 (01) ◽  
pp. 9-18 ◽  
Author(s):  
Frances H. Arnold

Not satisfied with nature’s vast enzyme repertoire, we want to create new ones and expand the space of genetically encoded enzyme functions. We use the most powerful biological design process, evolution, to optimize existing enzymes and invent new ones, thereby circumventing our profound ignorance of how sequence encodes function. Mimicking nature’s evolutionary tricks and using a little chemical intuition, we can generate whole new enzyme families that catalyze important reactions, including ones not known in biology. These new capabilities increase the scope of molecules and materials we can build using biology.


2021 ◽  
Vol 118 (16) ◽  
pp. e2016131118
Author(s):  
Pratik Vyas ◽  
Olena Trofimyuk ◽  
Liam M. Longo ◽  
Fanindra Kumar Deshmukh ◽  
Michal Sharon ◽  
...  

The P-loop Walker A motif underlies hundreds of essential enzyme families that bind nucleotide triphosphates (NTPs) and mediate phosphoryl transfer (P-loop NTPases), including the earliest DNA/RNA helicases, translocases, and recombinases. What were the primordial precursors of these enzymes? Could these large and complex proteins emerge from simple polypeptides? Previously, we showed that P-loops embedded in simple βα repeat proteins bind NTPs but also, unexpectedly so, ssDNA and RNA. Here, we extend beyond the purely biophysical function of ligand binding to demonstrate rudimentary helicase-like activities. We further constructed simple 40-residue polypeptides comprising just one β-(P-loop)-α element. Despite their simplicity, these P-loop prototypes confer functions such as strand separation and exchange. Foremost, these polypeptides unwind dsDNA, and upon addition of NTPs, or inorganic polyphosphates, release the bound ssDNA strands to allow reformation of dsDNA. Binding kinetics and low-resolution structural analyses indicate that activity is mediated by oligomeric forms spanning from dimers to high-order assemblies. The latter are reminiscent of extant P-loop recombinases such as RecA. Overall, these P-loop prototypes compose a plausible description of the sequence, structure, and function of the earliest P-loop NTPases. They also indicate that multifunctionality and dynamic assembly were key in endowing short polypeptides with elaborate, evolutionarily relevant functions.


2019 ◽  
Vol 12 (594) ◽  
pp. eaat9797 ◽  
Author(s):  
António J. M. Ribeiro ◽  
Sayoni Das ◽  
Natalie Dawson ◽  
Rossana Zaru ◽  
Sandra Orchard ◽  
...  

The 21st century is witnessing an explosive surge in our understanding of pseudoenzyme-driven regulatory mechanisms in biology. Pseudoenzymes are proteins that have sequence homology with enzyme families but that are proven or predicted to lack enzyme activity due to mutations in otherwise conserved catalytic amino acids. The best-studied pseudoenzymes are pseudokinases, although examples from other families are emerging at a rapid rate as experimental approaches catch up with an avalanche of freely available informatics data. Kingdom-wide analysis in prokaryotes, archaea and eukaryotes reveals that between 5 and 10% of proteins that make up enzyme families are pseudoenzymes, with notable expansions and contractions seemingly associated with specific signaling niches. Pseudoenzymes can allosterically activate canonical enzymes, act as scaffolds to control assembly of signaling complexes and their localization, serve as molecular switches, or regulate signaling networks through substrate or enzyme sequestration. Molecular analysis of pseudoenzymes is rapidly advancing knowledge of how they perform noncatalytic functions and is enabling the discovery of unexpected, and previously unappreciated, functions of their intensively studied enzyme counterparts. Notably, upon further examination, some pseudoenzymes have previously unknown enzymatic activities that could not have been predicted a priori. Pseudoenzymes can be targeted and manipulated by small molecules and therefore represent new therapeutic targets (or anti-targets, where intervention should be avoided) in various diseases. In this review, which brings together broad bioinformatics and cell signaling approaches in the field, we highlight a selection of findings relevant to a contemporary understanding of pseudoenzyme-based biology.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 587
Author(s):  
Pascal Sirand-Pugnet ◽  
Damien Brégeon ◽  
Laure Béven ◽  
Catherine Goyenvalle ◽  
Alain Blanchard ◽  
...  

The C5-methylation of uracil to form 5-methyluracil (m5U) is a ubiquitous base modification of nucleic acids. Four enzyme families have converged to catalyze this methylation using different chemical solutions. Here, we investigate the evolution of 5-methyluracil synthase families in Mollicutes, a class of bacteria that has undergone extensive genome erosion. Many mollicutes have lost some of the m5U methyltransferases present in their common ancestor. Cases of duplication and subsequent shift of function are also described. For example, most members of the Spiroplasma subgroup use the ancestral tetrahydrofolate-dependent TrmFO enzyme to catalyze the formation of m5U54 in tRNA, while a TrmFO paralog (termed RlmFO) is responsible for m5U1939 formation in 23S rRNA. RlmFO has replaced the S-adenosyl-L-methionine (SAM)-enzyme RlmD that adds the same modification in the ancestor and which is still present in mollicutes from the Hominis subgroup. Another paralog of this family, the TrmFO-like protein, has a yet unidentified function that differs from the TrmFO and RlmFO homologs. Despite having evolved towards minimal genomes, the mollicutes possess a repertoire of m5U-modifying enzymes that is highly dynamic and has undergone horizontal transfer.


Sign in / Sign up

Export Citation Format

Share Document