Theoretical treatment of the activation energy ΔE for ionic conductivity in AgX microcrystals

1979 ◽  
Vol 56 (1) ◽  
pp. K71-K74 ◽  
Author(s):  
F. Callens ◽  
W. Maenhout-Van Der Vorst
Cerâmica ◽  
2006 ◽  
Vol 52 (321) ◽  
pp. 22-30 ◽  
Author(s):  
M. L. F. Nascimento ◽  
E. Nascimento ◽  
W. M. Pontuschka ◽  
M. Matsuoka ◽  
S. Watanabe

We collected and analyzed literature data on ionic conductivity sigma and activation energy E A in the binary sodium silicate system in a wide composition range. The Anderson and Stuart model has been considered to describe the decreasing tendency of activation energy E A with alkali concentration in this system. In this analysis were considered experimental parameters, such as shear modulus G and relative dielectric permittivity epsilon. A general conductivity rule is found in 194 of 205 glasses, when one plots log sigma vs. E A/kB T, where kB is the Boltzmann constant and T is the absolute temperature. This fact means that the arrhenian relation has universal uniqueness of form sigma = sigma (E A,T) in wide Na2O composition range. The results also show that there is strong correlation by more than 19 orders of magnitude on conductivity with E A/kBT. An explanation for this behavior links ionic conductivity and microscopic structure. The problem of phase separation in this system is also considered.


2018 ◽  
Vol 790 ◽  
pp. 3-8 ◽  
Author(s):  
Shin Ichi Furusawa ◽  
Tomosato Ida

Tensile stress was applied to β-AgI thin film prepared on a polyethylene terephthalate film, and the ion conduction response in the direction of the tensile extension was investigated. The ionic conductivity of the β-AgI thin film decreases and the activation energy for ionic conduction increases with increasing extension ratio. This behaviour is attributed to the modulation of the crystal framework by the extension of the AgI thin film.


The rates of dehydrogenation in competition experiments using mixtures of two naphthenes, or a naphthene and a cyclic mono-olefine or two cyclic mono-olefines, have been examined theoretically and experimentally for the stationary state conditions. Provided the two reactants can occupy the same sites on the catalyst surface, then the ratio of the rates should be directly proportional to the ratio of the partial pressures at any instant. Theory suggests that a constant which can be derived from these competition experiments should be independent of the overall pressures, or of the initial ratio of concentrations or of the overall extent of dehydrogenation. Further, the ratio of the rates in competition should bear no simple relationship to the ratio of the individual rates alone, but should be related to the slopes of the 1/rate against 1/pressure plot for the two components considered separately. Moreover, the constant should be a ratio of two functions each of which is characteristic of one of the naphthenes. The theoretical conclusions have been confirmed experimentally which proves either that the groups of active sites on the catalyst surface are widely separated or that any set of sites is available for the reaction of any molecular species, and no interference takes place between naphthene molecules adsorbed on adjacent sites. Proof that a naphthene and cyclohexene are dehydrogenated on the same sites is supplied by the observation that a constant is obtained when different mixtures of cyclohexene and trans -1:4-dimethyl cyclohexane are allowed to compete for the surface. The ratios for methyl, ethyl, the three dimethyl and the three trimethyl cyclohexanes in competition with cyclohexane have been accurately determined at temperatures of 400 and 450° C. From the constants so derived the activation energy differences for the removal of the first pair of hydrogen atoms has been obtained. These values are discussed in terms of the possible transition complexes, and it is shown that the reaction proceeds by the loss of a pair of hydrogen atoms simultaneously and not by a half-hydrogenated state mechanism. Using these activation energies and the experimentally found overall activation energy of 36 kcal./g. mol., the resonance energy per resonating structure was determined as 1-73 kcal. This is in good agreement with the energies of C-H bonds in alkyl radicals (2-2 kcal./g.mol./ resonating structure). The theoretical treatment suggests that the weakest C-H link in methyl cyclohexane should be in the three position to the methyl group. A study of the activation energies involved shows that the methyl cyclohexene produced from methyl cyclohexane is not 1-methyl-1-cyclohexene, thus confirming the theoretical deduction.


2018 ◽  
Vol 790 ◽  
pp. 9-14
Author(s):  
Shin Ichi Furusawa ◽  
Yohei Minami

MAlSi3O8 (M = Li, Na, K) was synthesized by solid-phase reaction at 1000 °C using M2CO3 (M = Li, Na, K), Al2O3, and SiO2 as the starting materials, and its ionic conduction was studied in the temperature range 475–800 K. It was confirmed from powder X-ray diffraction profiles that the crystalline phases of the prepared MAlSi3O8 were the same as those of orthoclase. Moreover, the ionic conductivity of NaAlSi3O8 was about 10 times higher than that of LiAlSi3O8 and KAlSi3O8. The activation energies for ionic conduction were estimated to be in the range of 0.70–0.77 eV, with NaAlSi3O8 exhibiting the lowest activation energy. The result suggests that the magnitude of the activation energy cannot be determined only from the ionic radius.


2020 ◽  
Vol 22 (30) ◽  
pp. 17221-17228
Author(s):  
Abdulkadir Kızılaslan ◽  
Mine Kırkbınar ◽  
Tugrul Cetinkaya ◽  
Hatem Akbulut

The mechanism of the ionic conductivity enhancement in sulfur-doped Li1.3Al0.3Ti1.7(PO4)3 (LATP) solid electrolytes.


1990 ◽  
Vol 210 ◽  
Author(s):  
Cui Wanqiu ◽  
Shen Zhiqi ◽  
Zhou Debao

AbstractThe multicrystal multiphase ceramics material. Li2Mo2Wx06, with high conductivity is prepared. By XPD, EDX graph, IR and ESR spectra, it's determined that the samples are composed of two phases.Li2MO1-xWx04 and MoO2. The electrical properties are studied by AC admittance bridge and comptex impedance cpectroscopy. The ionic conductivity increases and conducted activation energy decreases with the tungsten content increasing. The micro-structure model. and the ionic conducted mechanism are given in this paper.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6404
Author(s):  
Yongqing Wang ◽  
Bo An ◽  
Ke Wang ◽  
Yan Cao ◽  
Fan Gao

To identify critical parameters upon variable operational temperatures in a planar SOFC, an experimentally agreeable model was established. The significance of temperature effect on the performance of SOFC components was investigated, and the effect of activation energy during the development of intermediate electrode materials was evaluated. It is found the ionic conductivity of electrolytes is identified to be unavoidably concerned in the development of the intermediate-temperature SOFC. The drop of the ionic conductivity of the electrolyte decreases the overall current density 63% and 80% at temperatures reducing to 700 °C and 650 °C from 800 °C. However, there exists a critical value on the defined ratio between the electric resistance of the electrolyte in the overall internal resistance of SOFC, above which the further increase in the ionic conductivity would not significantly improve the performance. The lower the operational temperature, the higher critical ratio of the electrical resistance in the overall internal resistance of the cell. The minimal decrease in the activation energy during the development of intermediate electrode materials can significantly enhance the overall performance. Considering the development trend toward the intermediate temperature SOFC, advanced electrode material with the decreased activation energy should be primarily focused. The result provides a guidance reference for developing SOFC with the operational temperature toward the intermediate temperature.


Sign in / Sign up

Export Citation Format

Share Document