On the stability of Guinier-Preston zones in an Al–1.87 at % Cu alloy at elevated temperature

1986 ◽  
Vol 95 (1) ◽  
pp. 73-80 ◽  
Author(s):  
U. Schmidt ◽  
A. Zahba ◽  
R. Schülbe ◽  
H. Löffler
1986 ◽  
Vol 98 (1) ◽  
pp. 81-89 ◽  
Author(s):  
R. Schülbe ◽  
U. Schmidt ◽  
P. Siebert

Author(s):  
J. R. Reed ◽  
D. J. Michel ◽  
P. R. Howell

The Al6Li3Cu (T2) phase, which exhibits five-fold or icosahedral symmetry, forms through solid state precipitation in dilute Al-Li-Cu alloys. Recent studies have reported that the T2 phase transforms either during TEM examination of thin foils or following ion-milling of thin foil specimens. Related studies have shown that T2 phase transforms to a microcrystalline array of the TB phase and a dilute aluminum solid solution during in-situ heating in the TEM. The purpose of this paper is to report results from an investigation of the influence of ion-milling on the stability of the T2 phase in dilute Al-Li-Cu alloy.The 3-mm diameter TEM disc specimens were prepared from a specially melted Al-2.5%Li-2.5%Cu alloy produced by conventional procedures. The TEM specimens were solution heat treated 1 h at 550°C and aged 1000 h at 190°C in air to develop the microstructure. The disc specimens were electropolished to achieve electron transparency using a 20:80 (vol. percent) nitric acid: methanol solution at -60°C.


Author(s):  
Stephanie Saalfeld ◽  
Thomas Wegener ◽  
Berthold Scholtes ◽  
Thomas Niendorf

AbstractThe stability of compressive residual stresses generated by deep rolling plays a decisive role on the fatigue behavior of specimens and components, respectively. In this regard, deep rolling at elevated temperature has proven to be very effective in stabilizing residual stresses when fatigue analysis is conducted at ambient temperature. However, since residual stresses can be affected not only by plastic deformation but also when thermal energy is provided, it is necessary to analyze the influence of temperature and time on the relaxation behavior of residual stresses at elevated temperature. To evaluate the effect of deep rolling at elevated temperatures on stability limits under thermal as well as combined thermo-mechanical loads, the present work introduces and discusses the results of investigations on the thermal stability of residual stresses in differently deep rolled material conditions of the steel SAE 1045.


2021 ◽  
Vol 53 (3) ◽  
pp. 52-58
Author(s):  
Natalya P. Bodryakova

This article deals with the problem of preserving the properties of a semi-finished fur product under the influence of a biological factor during the storage of raw materials. The characteristic features of the biodegradation of untreated rabbit skins during storage at elevated temperature and relative humidity are identified and described. A complex characteristic of a semi-finished fur product developed from raw materials of various degrees of microbiological spoilage is given. The author offers a point scale of assessment dynamics of the processes of destruction of fur raw materials and a point assessment of the organoleptic indicators of the semi-finished product was developed. As a result of comprehensive studies, it was found that the degree of damage to the fur raw materials being processed affects the decrease in the stability of the structure and strength properties of the finished semi-finished product.


2011 ◽  
Vol 528 (3) ◽  
pp. 1463-1466 ◽  
Author(s):  
Dongming Yao ◽  
Yumei Xia ◽  
Feng Qiu ◽  
Qichuan Jiang

2020 ◽  
Vol 10 (16) ◽  
pp. 5593-5601 ◽  
Author(s):  
Marco Etzi Coller Pascuzzi ◽  
Alex J. W. Man ◽  
Andrey Goryachev ◽  
Jan P. Hofmann ◽  
Emiel J. M. Hensen

Anodic polarization conducted at high current density, elevated temperature, and high KOH concentration impacted the structure and performance of NiFeOxHy and NiOxHy anodes.


2020 ◽  
Vol 540 ◽  
pp. 152364 ◽  
Author(s):  
Guma Yeli ◽  
Da Chen ◽  
Kiyohiro Yabuuchi ◽  
Akihiko Kimura ◽  
Shaofei Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document