Band structure and optical properties of SbSeI: density-functional calculation

2007 ◽  
Vol 244 (10) ◽  
pp. 3673-3683 ◽  
Author(s):  
Harun Akkus ◽  
Ali Kazempour ◽  
Hadi Akbarzadeh ◽  
Amirullah M. Mamedov
2018 ◽  
Vol 1 (1) ◽  
pp. 46-50
Author(s):  
Rita John ◽  
Benita Merlin

In this study, we have analyzed the electronic band structure and optical properties of AA-stacked bilayer graphene and its 2D analogues and compared the results with single layers. The calculations have been done using Density Functional Theory with Generalized Gradient Approximation as exchange correlation potential as in CASTEP. The study on electronic band structure shows the splitting of valence and conduction bands. A band gap of 0.342eV in graphene and an infinitesimally small gap in other 2D materials are generated. Similar to a single layer, AA-stacked bilayer materials also exhibit excellent optical properties throughout the optical region from infrared to ultraviolet. Optical properties are studied along both parallel (||) and perpendicular ( ) polarization directions. The complex dielectric function (ε) and the complex refractive index (N) are calculated. The calculated values of ε and N enable us to analyze optical absorption, reflectivity, conductivity, and the electron loss function. Inferences from the study of optical properties are presented. In general the optical properties are found to be enhanced compared to its corresponding single layer. The further study brings out greater inferences towards their direct application in the optical industry through a wide range of the optical spectrum.


2015 ◽  
Vol 29 (05) ◽  
pp. 1550028 ◽  
Author(s):  
R. Graine ◽  
R. Chemam ◽  
F. Z. Gasmi ◽  
R. Nouri ◽  
H. Meradji ◽  
...  

We carried out ab initio calculations of structural, electronic and optical properties of Indium nitride ( InN ) compound in both zinc blende and wurtzite phases, using the full-potential linearized augmented plane wave method (FP-LAPW), within the framework of density functional theory (DFT). For the exchange and correlation potential, local density approximation (LDA) and generalized gradient approximation (GGA) were used. Moreover, the alternative form of GGA proposed by Engel and Vosko (EV-GGA) and modified Becke–Johnson schemes (mBJ) were also applied for band structure calculations. Ground state properties such as lattice parameter, bulk modulus and its pressure derivative are calculated. Results obtained for band structure of these compounds have been compared with experimental results as well as other first principle computations. Our results show good agreement with the available data. The calculated band structure shows a direct band gap Γ → Γ. In the optical properties section, several optical quantities are investigated; in particular we have deduced the interband transitions from the imaginary part of the dielectric function.


2009 ◽  
Vol 23 (10) ◽  
pp. 2405-2412
Author(s):  
HARUN AKKUS ◽  
BAHATTIN ERDINC

The electronic band structure and optical properties of the ferroelectric single crystal KIO 3 have been investigated using the density functional methods. The calculated band structure for KIO 3 evidences that the crystal has a direct band gap with a value of 2.83 eV. The structural optimization has been performed. The real and imaginary parts of dielectric function, energy-loss function for volume and surface, and refractive index are calculated along the crystallographic axes.


2020 ◽  
Vol 34 (06) ◽  
pp. 2050035
Author(s):  
Xia Xu ◽  
Wei Zeng ◽  
Fu-Sheng Liu ◽  
Zheng-Tang Liu ◽  
Qi-Jun Liu

In this paper, the structural, electronic, elastic, mechanical and optical properties of monoclinic [Formula: see text] are studied using the first-principles density functional theory (DFT). The calculated structural parameters are consistent with the experimental data. The elastic constants of [Formula: see text] structures are calculated, indicating that [Formula: see text] shows mechanical stability and elastic anisotropy. According to the [Formula: see text] and Poisson’s ratio, monoclinic [Formula: see text] shows a brittle manner. The energy band structure, density of states, charge transfers and bond populations are given. And the band structure shows that the material is a metal conductor. Moreover, the optical properties and optical anisotropy of [Formula: see text] are shown and analyzed.


2017 ◽  
Vol 19 (41) ◽  
pp. 28330-28343 ◽  
Author(s):  
Amrita Pal ◽  
Lai Kai Wen ◽  
Chia Yao Jun ◽  
Il Jeon ◽  
Yutaka Matsuo ◽  
...  

Comparative DFT–DFTB study of multiple derivatives of C60 and C70 with different addends, in molecular and solid state.


2014 ◽  
Vol 716-717 ◽  
pp. 20-23
Author(s):  
Min Xu

based on Density Functional Theory, we investigated the optical structures and the electronic properties of Cu doped SnO2with density of 12.5%, including band structure, the density of state (dos), Dielectric function and optical absorption spectrum. The results show that Fermi level access conduction band gradually with the doped density. It has enhanced the electrical and metal property of material. The peaks of reflectivity spectrum and absorption spectrum correspond density of state.


2011 ◽  
Vol 216 ◽  
pp. 341-344 ◽  
Author(s):  
Qi Jun Liu ◽  
Zheng Tang Liu ◽  
Li Ping Feng

Electronic structure, effective masses and optical properties of monoclinic HfO2were studied using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT). The calculated equilibrium lattice parameters are in agreement with the previous works. From the band structure, the effective masses and optical properties are obtained. The calculated band structure shows that monoclinic HfO2has indirect band gap and all of the effective masses of electrons and holes are less than that of a free electron. The peaks position distributions of imaginary parts of the complex dielectric function have been explained according to the theory of crystal-field and molecular-orbital bonding.


Author(s):  
M. A. HADI ◽  
M. S. ALI ◽  
S. H. NAQIB ◽  
A. K. M. A. ISLAM

First-principles investigation of the geometry, electronic band structure, Vickers hardness, thermodynamic and optical properties of three superconducting MAX compounds Nb 2 AsC , Nb 2 InC and Mo 2 GaC have been carried out by the plane-wave pseudopotential method based on density functional theory (DFT) implemented in the CASTEP code. The theoretical Vickers hardness has been studied by means of Mulliken bond population analysis and electronic densities of states. The thermodynamic properties such as the temperature and pressure dependent bulk modulus, Debye temperature, specific heats and thermal expansion coefficient of the three 211 MAX phases are derived from the quasi-harmonic Debye model with phononic effect for the first time. Furthermore, all the optical properties are determined and analyzed for the first time for two different polarization directions. The theoretical findings are compared with relevant experiments (where available) and the various implications are discussed in details.


2013 ◽  
Vol 27 (13) ◽  
pp. 1350053 ◽  
Author(s):  
MASOUD BEZI JAVAN

A typical nitrogen doped spherical SiC nanocrystal with a diameter of 1.2 nm ( Si 43 C 44 H 76) using linear combination atomic orbital (LCAO) in combination with pseudopotential density functional calculation have been studied. Our selected SiC nanocrystal has been modeled taking all the cubic bulk SiC atoms contained within a sphere of a given radius and terminating the surface dangling bonds with hydrogen atoms. We have examined nine possible situations in which nitrogen has a high probability for replacement in the lattice or placed between atoms in the nanocrystal. We have found that the silicone can substitute with a nitrogen atom in each layer as the constructed nanocrystals remain thermodynamically stable. Also the nitrogen atom can be placed between the free atomic spaces as the more thermodynamically stable position of the nitrogen is between the topmost layers. Also the optical absorption and refractive index energy dispersions of the pure and various stable doped SiC nanocrystals were studied.


Sign in / Sign up

Export Citation Format

Share Document