scholarly journals IQP‐GC‐101 Reduces Body Weight and Body Fat Mass: A Randomized, Double‐Blind, Placebo‐Controlled Study

2014 ◽  
Vol 28 (10) ◽  
pp. 1520-1526 ◽  
Author(s):  
Pee‐Win Chong ◽  
Zhi‐Ming Beah ◽  
Barbara Grube ◽  
Linda Riede
Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 279
Author(s):  
Javier Marhuenda ◽  
Silvia Perez-Piñero ◽  
Desirée Victoria-Montesinos ◽  
María Salud Abellán-Ruiz ◽  
Nuria Caturla ◽  
...  

The authors wish to make the following correction to this paper [...]


2013 ◽  
Vol 28 (4) ◽  
pp. 395-400 ◽  
Author(s):  
Tracey H Taveira ◽  
Wen-Chih Wu ◽  
Evelyne Tschibelu ◽  
David Borsook ◽  
Donald C Simonson ◽  
...  

2019 ◽  
Vol 29 (2) ◽  
pp. 265-273 ◽  
Author(s):  
Soo-Hyun Park ◽  
Su-Jin Jung ◽  
Eun-Kyung Choi ◽  
Ki-Chan Ha ◽  
Hyang-Im Baek ◽  
...  

Abstract Steamed ginger ethanolic extract (SGE) is a product with a high 6-shogaol contents and is thought to be more potent than other ginger products. We conducted a 12-week, randomized, double-blind, placebo-controlled clinical trial to determine the effects of SGE on weight and body fat loss. Eighty healthy obese participants were recruited and randomly divided into the SGE and placebo groups. The outcome measures comprised indicators of efficacy (body weight, body mass index, body composition, and blood markers) and safety. Following the supplementation period, mean body weight, body mass index, and body fat level were significantly lower in the SGE group than in the placebo group. No clinically significant changes were observed for any safety parameter. These results suggest that SGE is a potent anti-obesity agent that does not cause significant side effects. Therefore, SGE supplementation combined with lifestyle modification could be effective in the management of body weight and fat mass.


Medicina ◽  
2010 ◽  
Vol 46 (2) ◽  
pp. 129 ◽  
Author(s):  
Arvydas Stasiulis ◽  
Asta Mockienė ◽  
Daiva Vizbaraitė ◽  
Pranas Mockus

The objective of the study was to assess changes in body composition, blood lipid and lipoprotein concentrations in 18–24-year-old women during the period of two-month aerobic cycling training. Material and methods. Young, healthy, nonsmoking women (n=19) volunteered to participate in this study. They were divided in two groups: experimental (E, n=10) and control (C, n=9). The subjects of group E exercised 3 times a week with intensity of the first ventilatory threshold and duration of 60 min. The group C did not exercise regularly over a two-month period of the experiment. The subjects of group E were tested before and after 2, 4, 6 and 8 weeks of the experiment. The participants of group C were tested twice with an eight-week interval. Results. Body weight, body mass index, body fat mass, and triacylglycerol (TAG) concentration decreased and high-density lipoprotein cholesterol (HDL-ch) concentration increased after the 8-week training program in the experimental group (P<0.05). Blood total cholesterol (Tch) and low-density lipoprotein cholesterol (LDL-ch) concentrations did not change significantly. Body weight and body mass index started to decrease after 2 weeks of the experiment, but significant changes were observed only after 6 and 8 weeks. Body fat mass was significantly decreased after 2 and 8 weeks of aerobic training. A significant increase in HDL-ch concentration was observed after 4, 6, and 8 weeks. A significant decrease in TAG concentration was observed after 2-week training. No significant changes in all the parameters except TAG (it was slightly increased) were seen in the control group. Conclusions. The two-month aerobic cycling training (within VT1, 60-min duration, three times a week) may induce significant changes in the parameters of body composition – body weight, body mass index, body fat mass, and blood lipids – in young women. The following significant changes were observed: TAG level decreased after 2 weeks, body mass and body mass index decreased after 6 weeks, body fat mass decreased and HDL-ch level increased after 8 weeks. Peak oxygen uptake increased after 4 weeks.


1993 ◽  
Vol 128 (4) ◽  
pp. 313-318 ◽  
Author(s):  
Roman Deyssig ◽  
Herwig Frisch ◽  
Werner F Blum ◽  
Thomas Waldhör

The effect of recombinant GH on strength, body composition and endocrine parameters in power athletes was investigated in a controlled study. Twenty-two healthy, non-obese males (age 23.4±0.5 years; ideal body weight 122±3.1%, body fat 10.1±1.0%; mean±sem) were included. Probands were assigned in a double-blind manner to either GH treatment (0.09U (kg BW)−1 day−1 sc) or placebo for a period of six weeks. To exclude concurrent treatment with androgenic-anabolic steroids urine specimens were tested at regular intervals for these substances. Serum was assayed for GH, IGF-I, IGF-binding protein, insulin and thyroxine before the onset of the study and at two-weekly intervals thereafter. Maximal voluntary strength of the biceps and quadriceps muscles was measured on a strength training apparatus. Fat mass and lean body mass were derived from measurements of skinfolds at ten sites with a caliper. For final evaluation only data of those 8 and 10 subjects in the two groups who completed the study were analyzed. GH, IGF-I and IGF-binding protein were in the normal range before therapy and increased significantly in the GH-treated group. Fasting insulin concentrations increased insignificantly and thyroxine levels decreased significantly in the GH-treated probands. There was no effect of GH treatment on maximal strength during concentric contraction of the biceps and quadriceps muscles. Body weight and body fat were not changed significantly during treatment. We conclude that the anabolic, lipolytic effect of GH therapy in adults depends on the degree of fat mass and GH deficiency. In highly trained power athletes with low fat mass there were no effects of GH treatment on strength and body composition.


Sign in / Sign up

Export Citation Format

Share Document