Halogen bond versus hydrogen bond: The many-body interactions approach

2017 ◽  
Vol 117 (7) ◽  
pp. e25348 ◽  
Author(s):  
Małgorzata Domagała ◽  
Aneta Lutyńska ◽  
Marcin Palusiak

2021 ◽  
Vol 118 (11) ◽  
pp. 113101
Author(s):  
Xiaoli Zhu ◽  
Siting Ding ◽  
Lihui Li ◽  
Ying Jiang ◽  
Biyuan Zheng ◽  
...  


1992 ◽  
Vol 278 ◽  
Author(s):  
J. A. Rifkin ◽  
C. S. Becquart ◽  
D. Kim ◽  
P. C. Clapp

AbstractWe have carried out a series of atomistic simulations on arrays of about 10,000 atoms containing an atomically sharp crack and subjected to increasing stress levels. The ordered stoichiometric alloys B2 NiAl, B2 RuAl and A15 Nb3AI have been studied at different temperatures and stress levels, as well as the elements Al, Ni, Nb and Ru. The many body interactions used in the simulations were derived semi-empirically, using techniques related to the Embedded Atom Method. Trends in dislocation generation rates and crack propagation modes will be discussed and compared to experimental indications where possible, and some of the simulations will be demonstrated in the form of computer movies.



2009 ◽  
Vol 109 (4) ◽  
pp. 664-666 ◽  
Author(s):  
S. I. Pesotskiĭ ◽  
R. B. Lyubovskiĭ ◽  
M. V. Kartsovnik ◽  
W. Biberacher ◽  
N. D. Kushch ◽  
...  


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1160
Author(s):  
Václav Snášel ◽  
Pavla Dráždilová ◽  
Jan Platoš

Many real networks in biology, chemistry, industry, ecological systems, or social networks have an inherent structure of simplicial complexes reflecting many-body interactions. Over the past few decades, a variety of complex systems have been successfully described as networks whose links connect interacting pairs of nodes. Simplicial complexes capture the many-body interactions between two or more nodes and generalized network structures to allow us to go beyond the framework of pairwise interactions. Therefore, to analyze the topological and dynamic properties of simplicial complex networks, the closed trail metric is proposed here. In this article, we focus on the evolution of simplicial complex networks from clicks and k-CT graphs. This approach is used to describe the evolution of real simplicial complex networks. We conclude with a summary of composition k-CT graphs (glued graphs); their closed trail distances are in a specified range.





2021 ◽  
Vol 23 (1) ◽  
pp. 233
Author(s):  
Małgorzata Domagała ◽  
Sílvia Simon and Marcin Palusiak

In the presented research, we address the original concept of resonance-assisted hydrogen bonding (RAHB) by means of the many-body interaction approach and electron density delocalization analysis. The investigated molecular patterns of RAHBs are open chains consisting of two to six molecules in which the intermolecular hydrogen bond stabilizes the complex. Non-RAHB counterparts are considered to be reference systems. The results show the influence of the neighbour monomers on the unsaturated chains in terms of the many-body interaction energy contribution. Exploring the relation between the energy parameters and the growing number of molecules in the chain, we give an explicit extrapolation of the interaction energy and its components in the infinite chain. Electron delocalization within chain motifs has been analysed from three different points of view: three-body delocalization between C=C-C, two-body hydrogen bond delocalization indices and also between fragments (monomers). A many-body contribution to the interaction energy as well as electron density helps to establish the assistance of resonance in the strength of hydrogen bonds upon the formation of the present molecular chains. The direct relation between interaction energy and delocalization supports the original concept, and refutes some of the criticisms of the RAHB idea.



2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Soonchul Choi ◽  
Myung-Ki Cheoun ◽  
K S Kim ◽  
Hungchong Kim ◽  
H Sagawa

Abstract We suggest a hybrid model for neutron star matter to discuss the hyperon puzzle inherent in the 2.0 M$_{\odot}$ of the neutron star. For the nucleon–nucleon ($NN$) interaction, we employ the Skyrme–Hartree–Fock approach based on various Skyrme interaction parameter sets, and take the Brueckner–Hartree–Fock approach for the interactions related to hyperons. For the many-body interactions including hyperons, we make use of the multi-pomeron-exchange model, whose parameters have been adjusted to the data deduced from various hypernuclei properties. For clear understanding of the physics in the hybrid model, we discuss fractional functions of related particles, symmetry energies, and chemical potentials in dense matter. Finally, we investigate the equations of state and mass–radius relation of neutron stars, and show that the hybrid model can properly describe the 2.0 M$_{\odot}$ neutron star mass data with the many-body interaction employed in the hybrid model. Recent tidal deformability data from the gravitational wave observation are also compared to our calculations, especially in terms of the neutron skin of $^{208}$Pb and nuclear incompressibility.



1990 ◽  
Vol 213 ◽  
Author(s):  
J. Mikalopas ◽  
P.A. Sterne ◽  
M. Sluiter ◽  
P.E.A. Turchi

ABSTRACTOne way to calculate the coherent phase diagram of an alloy based on first principles methods is to compute the ground state total energy for various ordered configurations, from which many-body interactions can be calculated and employed in a thermodynamic model. If the Connolly and Williams method (CWM) is used to extract the many-body interactions from the calculated total energies, the resulting many-body interactions can exhibit a strong dependence on the choice of ordered configurations and multi-site clusters, and the accuracy and convergence of the CWM energy expansion is not assured. To overcome this difficulty, a successful systematic method for implementing the CWM is proposed. This approach is applied to a study of the fcc-based Ni-V and Pd-V substitutional alloys and these interaction parameters together with the cluster variation method (CVM) are used to calculate phase diagrams.



Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 445
Author(s):  
Mahi R. Singh

In this review article, we discuss the many-body interactions in plasmonic nanohybrids made of an ensemble of quantum emitters and metallic nanoparticles. A theory of the linear and nonlinear optical emission intensity was developed by using the many-body quantum mechanical density matrix method. The ensemble of quantum emitters and metallic nanoparticles interact with each other via the dipole-dipole interaction. Surfaces plasmon polaritons are located near to the surface of the metallic nanoparticles. We showed that the nonlinear Kerr intensity enhances due to the weak dipole-dipole coupling limits. On the other hand, in the strong dipole-dipole coupling limit, the single peak in the Kerr intensity splits into two peaks. The splitting of the Kerr spectrum is due to the creation of dressed states in the plasmonic nanohybrids within the strong dipole-dipole interaction. Further, we found that the Kerr nonlinearity is also enhanced due to the interaction between the surface plasmon polaritons and excitons of the quantum emitters. Next, we predicted the spontaneous decay rates are enhanced due to the dipole-dipole coupling. The enhancement of the Kerr intensity due to the surface plasmon polaritons can be used to fabricate nanosensors. The splitting of one peak (ON) two peaks (OFF) can be used to fabricate the nanoswitches for nanotechnology and nanomedical applications.





Sign in / Sign up

Export Citation Format

Share Document