Chip size and performance evaluations of shared cache for on-chip multiprocessor

2005 ◽  
Vol 36 (9) ◽  
pp. 1-13
Author(s):  
Takahiro Sasaki ◽  
Tomohiro Inoue ◽  
Nobuhiko Omori ◽  
Tetsuo Hironaka ◽  
Hans J. Mattausch ◽  
...  
2010 ◽  
Vol 21 (03) ◽  
pp. 387-404 ◽  
Author(s):  
MARTTI FORSELL

The Parallel Random Access Machine is a very strong model of parallel computing that has resisted cost-efficient implementation attempts for decades. Recently, the development of VLSI technology has provided means for indirect on-chip implementation, but there are different variants of the PRAM model that provide different performance, area and power figures and it is not known how their implementations compare to each others. In this paper we measure the performance and estimate the cost of practical implementations of four PRAM models including EREW, Limited Arbitrary CRCW, Full Arbitrary CRCW, Full Arbitrary Multioperation CRCW on our Eclipse chip multiprocessor framework. Interestingly, the most powerful model shows the lowest simulation cost and highest performance/area and performance/power figures.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1587
Author(s):  
Duo Sheng ◽  
Hsueh-Ru Lin ◽  
Li Tai

High performance and complex system-on-chip (SoC) design require a throughput and stable timing monitor to reduce the impacts of uncertain timing and implement the dynamic voltage and frequency scaling (DVFS) scheme for overall power reduction. This paper presents a multi-stage timing monitor, combining three timing-monitoring stages to achieve a high timing-monitoring resolution and a wide timing-monitoring range simultaneously. Additionally, because the proposed timing monitor has high immunity to the process–voltage–temperature (PVT) variation, it provides a more stable time-monitoring results. The time-monitoring resolution and range of the proposed timing monitor are 47 ps and 2.2 µs, respectively, and the maximum measurement error is 0.06%. Therefore, the proposed multi-stage timing monitor provides not only the timing information of the specified signals to maintain the functionality and performance of the SoC, but also makes the operation of the DVFS scheme more efficient and accurate in SoC design.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 346 ◽  
Author(s):  
Lili Shen ◽  
Ning Wu ◽  
Gaizhen Yan

By using through-silicon-vias (TSV), three dimension integration technology can stack large memory on the top of cores as a last-level on-chip cache (LLC) to reduce off-chip memory access and enhance system performance. However, the integration of more on-chip caches increases chip power density, which might lead to temperature-related issues in power consumption, reliability, cooling cost, and performance. An effective thermal management scheme is required to ensure the performance and reliability of the system. In this study, a fuzzy-based thermal management scheme (FBTM) is proposed that simultaneously considers cores and stacked caches. The proposed method combines a dynamic cache reconfiguration scheme with a fuzzy-based control policy in a temperature-aware manner. The dynamic cache reconfiguration scheme determines the size of the cache for the processor core according to the application that reaches a substantial amount of power consumption savings. The fuzzy-based control policy is used to change the frequency level of the processor core based on dynamic cache reconfiguration, a process which can further improve the system performance. Experiments show that, compared with other thermal management schemes, the proposed FBTM can achieve, on average, 3 degrees of reduction in temperature and a 41% reduction of leakage energy.


2006 ◽  
Vol 970 ◽  
Author(s):  
Manabu Bonkohara ◽  
Makoto Motoyoshi ◽  
Kazutoshi Kamibayashi ◽  
Mitsumasa Koyanagi

ABSTRACTRecently the development of three dimensional LSI (3D-LSI) has been accelerated and its stage has changed from the research level or limited production level to the investigation level with a view to mass production. This paper describes the current and the future 3D-LSI technologies which we have considered and imagined. The current technology is taken our Chip Size Package (CSP) for sensor device, for instance. In the future technology, there are the five key technologies are described. And considering con and pro of the current 3D LSI stacked approach, such as CoC (Chip on Chip), CoW (Chip on Wafer) and WoW (Wafer on Wafer), We confirmed that CoW combined with Super-Smart-Stack (SSS™) technology will shorten the process time per chip at the same level as WoW approach and is effective to minimize process cost.


Sign in / Sign up

Export Citation Format

Share Document