Development of on‐road emission inventory and evaluation of policy intervention on future emission reduction toward sustainability in Vietnam

2021 ◽  
Author(s):  
Shimul Roy ◽  
Yun Fat Lam ◽  
Ngo Tho Hung ◽  
Johnny C. L. Chan
2017 ◽  
Author(s):  
Didin Agustian Permadi ◽  
Nguyen Thi Kim Oanh ◽  
Robert Vautard

Abstract. This research assessed the potential co-benefits associated with selected black carbon (BC) emission reduction measures on mitigation of air pollution and climate forcing in Southeast Asia (SEA). This paper presents Part 1 of the research with details on the emission inventory (EI) results and the WRF/CHIMERE model performance evaluation. The SEA regional emissions for 2007 were updated with our EI results for Indonesia, Thailand and Cambodia and used for the model input. WRF/CHIMERE simulated PM10, PM2.5 and BC over the SEA domain (0.25º x 0.25º) of the year 2007 and the results were evaluated against the available monitoring data in the domain. WRF hourly simulation results were evaluated using the observed data at 8 international airport stations in 5 SEA countries and showed a satisfactory performance. WRF/CHIMERE results for PM10 and PM2.5 showed strong seasonal influence of biomass open burning while BC distribution showed the influence of urban activities in big SEA cities. Daily average PM10 constructed from the hourly concentrations were obtained from the automatic monitoring stations in three SEA large cities, i.e. Bangkok, Kuala Lumpur and Surabaya for model evaluation. The daily observed PM2.5 and BC concentrations obtained from the Improving Air Quality in the Asian Developing Countries (AIRPET) project for 4 cities (i.e. Bangkok, Hanoi, Bandung, and Manila) were also used for model evaluation. In addition, hourly BC concentrations were taken from the measurement results of the Asian Pacific Network (APN) project at a sub-urban site in Bangkok. The modeled PM10 and BC satisfactorily met all suggested statistical criteria for PM evaluation. The modeled PM2.5/PM10 ratios estimated for four AIRPET sites ranged between 0.47–0.59, lower than observed values of 0.6–0.83. Better agreement was found for BC/PM2.5 ratios with the modeled values of 0.05–0.33 as compared to the observation values of 0.05–0.28. AODEM (extended aerosol optical depth module) was used to calculate the total columnar aerosol optical depth (AOD) and BC AOD using the internal mixing assumption. The model AOD results were evaluated against the observed AOD by both AERONET and MODIS satellite in 10 countries in the domain. Our model results showed that the BC AOD contributed 7.5–12 % of the total AOD, which was in the same ranges reported by other studies for places with intensive emissions. The Part 1 results (this study) is used in Part 2 (Permadi et al., 2017a) which calculates the regional aerosol direct radiative forcing under different emission reduction scenarios to explore potential co-benefits for air quality improvement, reduction in number of premature deaths and climate forcing mitigation in SEA in 2030.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mizuo Kajino ◽  
Sachiko Hayashida ◽  
Tsuyoshi Thomas Sekiyama ◽  
Makoto Deushi ◽  
Kazuki Ito ◽  
...  

AbstractSatellite sensors are powerful tools to monitor the spatiotemporal variations of air pollutants in large scales, but it has been challenging to detect surface O3 due to the presence of abundant stratospheric and upper tropospheric O3. East Asia is one of the most polluted regions in the world, but anthropogenic emissions such as NOx and SO2 began to decrease in 2010s. This trend was well observed by satellites, but the spatiotemporal impacts of these emission trends on O3 have not been well understood. Recent advancement in a retrieval method for the Ozone Monitoring Instrument (OMI) sensor enabled detection of lower tropospheric O3 and its legitimacy has been validated. In this study, we investigated the statistical significance for the OMI sensor to detect the lower tropospheric O3 responses to the future emission reduction of the O3 precursor gases over East Asia in summer, by utilizing a regional chemistry model. The emission reduction of 10, 25, 50, and 90% resulted in 4.4, 11, 23, and 53% decrease of the areal and monthly mean daytime simulated satellite-detectable O3 (ΔO3), respectively. The fractions of significant areas are 55, 84, 93, and 96% at a one-sided 95% confidence interval. Because of the recent advancement of satellite sensor technologies (e.g., TROPOMI), study on tropospheric photochemistry will be rapidly advanced in the near future. The current study proved the usefulness of such satellite analyses on the lower tropospheric O3 and its perturbations due to the precursor gas emission controls.


2015 ◽  
Vol 49 (23) ◽  
pp. 13868-13877 ◽  
Author(s):  
Ying Zhu ◽  
Shu Tao ◽  
Oliver R. Price ◽  
Huizhong Shen ◽  
Kevin C. Jones ◽  
...  

2021 ◽  
Author(s):  
qijun zhang ◽  
ning wei ◽  
Lei Yang ◽  
Xi Feng ◽  
yanjie zhang ◽  
...  

Abstract The establishment of a non-road construction machinery emission inventory forms the basis for the analysis of pollutant emission characteristics and for the formulation of control policy. We analysed and investigated data on populations, emission factors and activity levels for the construction machinery in Tianjin to estimate an emission inventory. Finally, a variety of emission reduction scenarios were used to simulate emission reductions and propose the most effective control policy. The results show that total emissions of CO, HC, NOx, PM10 and PM2.5 from non-road construction machinery in Tianjin of 2018 reached 4180.78, 951.44, 5833.85, 383.92 and 365.70 t, respectively. Forklifts, excavators and loaders were the three most important emission sources in Tianjin. There are clear differences in the emissions of different districts. Large machinery emissions were mainly distributed across the Binhai New Area, which includes high volumes of port machinery and tractors in Tianjin Port. Based on various emission reduction scenarios, the effect of emission reductions is estimated. The IAD affected the reduction of CO and HC emissions with RR values of 17.6% and 17.3%, respectively, while EMO affected the mitigation of PM10 and PM2.5 emissions and RR values by 18.0% and 18.4%, respectively. The emission reduction control policy for non-road construction machinery is proposed, including the accelerated updating of non-road machinery emission standards; integrating diesel engine research and development institutions to accelerate the development of vehicle after-treatment technology; and establishing a cooperation mechanism for scientific research institutes, government departments and enterprises in the control of non-road mobile machinery emissions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Meng Wang ◽  
Lei Feng ◽  
Pengfei Zhang ◽  
Gaohang Cao ◽  
Hanbin Liu ◽  
...  

Xinjiang production and Construction Corps (XPCC) is an important provincial administration in China and vigorously promotes the construction of industrialization. However, there has been little research on its emissions. This study first established the 1998-2018 XPCC subsectoral carbon emission inventory based on the Intergovernmental Panel on Climate Change (IPCC) carbon emission inventory method and adopted the logarithmic mean Divisia indexmethod (LMDI) model to analyze the driving factors. The results revealed that from 1998 to 2018, the total carbon emissions in the XPCC increased from 6.11 Mt CO2 in 1998 to 115.71 Mt CO2 in 2018. For the energy structure, raw coal, coke and industrial processes were the main contributors to carbon emissions. For industrial structure, the main emission sectors were the production and supply of electric power, steam and hot water, petroleum processing and coking, raw chemical materials and chemical products, and smelting and pressing of nonferrous metals. In addition, the economic effect was the leading factor promoting the growth of the corps carbon emissions, followed by technical and population effects. The energy structure effect was the only factor yielding a low emission reduction degree. This research provides policy recommendations for the XPCC to formulate effective carbon emission reduction measures, which is conducive to the construction of a low-carbon society. Moreover, it is of guiding significance for the development of carbon emission reduction actions for the enterprises under the corps and provides a reference value for other provincial regions.


2021 ◽  
Vol 21 (18) ◽  
pp. 13835-13853
Author(s):  
Xiaotong Wang ◽  
Wen Yi ◽  
Zhaofeng Lv ◽  
Fanyuan Deng ◽  
Songxin Zheng ◽  
...  

Abstract. Ship emissions and coastal air pollution around China are expected to be alleviated with the gradual implementation of ship domestic emission control area (DECA) policies. However, a comprehensive post-assessment on the policy's effectiveness is still lacking. This study developed a series of high-spatiotemporal ship emission inventories around China from 2016 to 2019 based on an updated Ship Emission Inventory Model (SEIM v2.0) and analyzed the interannual changes in emissions under the influence of both ship activity increases and gradually promoted policies. In this model, NOx, SO2, PM and HC emissions from ships in China's inland rivers and the 200 Nm (nautical miles) coastal zone were estimated every day with a spatial resolution of 0.05∘×0.05∘ based on a combination of automatic identification system (AIS) data and the Ship Technical Specifications Database (STSD). The route restoration technology and classification of ocean-going vessels (OGVs), coastal vessels (CVs) and river vessels (RVs) has greatly improved our model in the spatial distribution of ship emissions. From 2016 to 2019, SO2 and PM emissions from ships decreased by 29.6 % and 26.4 %, respectively, while ship NOx emissions increased by 13.0 %. Although the DECA 1.0 policy was implemented in 2017, it was not until 2019 when DECA 2.0 came into effect that a significant emission reduction was achieved, e.g., a year-on-year decrease of 33.3 %, regarding SO2. Considering the potential emissions brought by the continuous growth of maritime trade, however, an even larger SO2 emission reduction effect of 39.8 % was achieved in these 4 years compared with the scenario without switching to cleaner fuel. Containers and bulk carriers are still the dominant contributors to ship emissions, and newly built, large ships and ships using clean fuel oil account for an increasingly large proportion of emission structures. A total of 4 years of consecutive daily ship emissions were presented for major ports, which reflects the influence of the step-by-step DECA policy on emissions in a timely manner and may provide useful references for port observation experiments and local policy making. In addition, the spatial distribution shows that a number of ships detoured outside the scope of DECA 2.0 in 2019, perhaps to save costs on more expensive low-sulfur oil, which would increase emissions in farther maritime areas. The multiyear ship emission inventory provides high-quality datasets for air-quality and dispersion modeling, as well as verifications for in situ observation experiments, which may also guide further ship emission control directions in China.


Sign in / Sign up

Export Citation Format

Share Document