An Ultrasmall Fe 3 O 4 ‐Decorated Polydopamine Hybrid Nanozyme Enables Continuous Conversion of Oxygen into Toxic Hydroxyl Radical via GSH‐Depleted Cascade Redox Reactions for Intensive Wound Disinfection

Small ◽  
2021 ◽  
pp. 2105465
Author(s):  
Jiayu Xiao ◽  
Luo Hai ◽  
Yaoyao Li ◽  
Huan Li ◽  
Minhui Gong ◽  
...  
1991 ◽  
Vol 69 (3) ◽  
pp. 540-544 ◽  
Author(s):  
S. R. Logan

The effect of various alcohols and diols in diminishing the extent of the photo-oxidation of 4-ferrocenylbutanoate ion in the presence of N2O has been investigated. Where the hydroxyl radical generated in the photo-initiated electron transfer reacts with an alcohol by H atom abstraction at the α-position, the resulting radical is capable of reducing the ferricenium zwitterion to the ferrocenyl anion. Abstraction at other positions produces radicals that are essentially inert in this system and rate constants are derived for the reaction of OH with some such compounds. Non-vicinal diols behave similarly to the corresponding alcohols. With vicinal diols, a dehydration process, which occurs the more slowly the more highly substituted the diol, converts the radical -CR(OH)Ċ(OH)- into -ĊRCO-, which is an oxidizing species. The behaviour of pinacol was found to be anomalous. Key words: radical reactions, redox behaviour, alcohols.


1997 ◽  
Vol 161 ◽  
pp. 437-442
Author(s):  
Salvatore Di Bernardo ◽  
Romana Fato ◽  
Giorgio Lenaz

AbstractOne of the peculiar aspects of living systems is the production and conservation of energy. This aspect is provided by specialized organelles, such as the mitochondria and chloroplasts, in developed living organisms. In primordial systems lacking specialized enzymatic complexes the energy supply was probably bound to the generation and maintenance of an asymmetric distribution of charged molecules in compartmentalized systems. On the basis of experimental evidence, we suggest that lipophilic quinones were involved in the generation of this asymmetrical distribution of charges through vectorial redox reactions across lipid membranes.


2004 ◽  
Vol 71 ◽  
pp. 97-106 ◽  
Author(s):  
Mark Burkitt ◽  
Clare Jones ◽  
Andrew Lawrence ◽  
Peter Wardman

The release of cytochrome c from mitochondria during apoptosis results in the enhanced production of superoxide radicals, which are converted to H2O2 by Mn-superoxide dismutase. We have been concerned with the role of cytochrome c/H2O2 in the induction of oxidative stress during apoptosis. Our initial studies showed that cytochrome c is a potent catalyst of 2′,7′-dichlorofluorescin oxidation, thereby explaining the increased rate of production of the fluorophore 2′,7′-dichlorofluorescein in apoptotic cells. Although it has been speculated that the oxidizing species may be a ferryl-haem intermediate, no definitive evidence for the formation of such a species has been reported. Alternatively, it is possible that the hydroxyl radical may be generated, as seen in the reaction of certain iron chelates with H2O2. By examining the effects of radical scavengers on 2′,7′-dichlorofluorescin oxidation by cytochrome c/H2O2, together with complementary EPR studies, we have demonstrated that the hydroxyl radical is not generated. Our findings point, instead, to the formation of a peroxidase compound I species, with one oxidizing equivalent present as an oxo-ferryl haem intermediate and the other as the tyrosyl radical identified by Barr and colleagues [Barr, Gunther, Deterding, Tomer and Mason (1996) J. Biol. Chem. 271, 15498-15503]. Studies with spin traps indicated that the oxo-ferryl haem is the active oxidant. These findings provide a physico-chemical basis for the redox changes that occur during apoptosis. Excessive changes (possibly catalysed by cytochrome c) may have implications for the redox regulation of cell death, including the sensitivity of tumour cells to chemotherapeutic agents.


2018 ◽  
Author(s):  
Danilo Carmona ◽  
David Contreras ◽  
Oscar A. Douglas-Gallardo ◽  
Stefan Vogt-Geisse ◽  
Pablo Jaque ◽  
...  

The Fenton reaction plays a central role in many chemical and biological processes and has various applications as e.g. water remediation. The reaction consists of the iron-catalyzed homolytic cleavage of the oxygen-oxygen bond in the hydrogen peroxide molecule and the reduction of the hydroxyl radical. Here, we study these two elementary steps with high-level ab-initio calculations at the complete basis set limit and address the performance of different DFT methods following a specific classification based on the Jacob´s ladder in combination with various Pople's basis sets. Ab-initio calculations at the complete basis set limit are in agreement to experimental reference data and identified a significant contribution of the electron correlation energy to the bond dissociation energy (BDE) of the oxygen-oxygen bond in hydrogen peroxide and the electron affinity (EA) of the hydroxyl radical. The studied DFT methods were able to reproduce the ab-initio reference values, although no functional was particularly better for both reactions. The inclusion of HF exchange in the DFT functionals lead in most cases to larger deviations, which might be related to the poor description of the two reactions by the HF method. Considering the computational cost, DFT methods provide better BDE and EA values than HF and post--HF methods with an almost MP2 or CCSD level of accuracy. However, no systematic general prediction of the error based on the employed functional could be established and no systematic improvement with increasing the size in the Pople's basis set was found, although for BDE values certain systematic basis set dependence was observed. Moreover, the quality of the hydrogen peroxide, hydroxyl radical and hydroxyl anion structures obtained from these functionals was compared to experimental reference data. In general, bond lengths were well reproduced and the error in the angles were between one and two degrees with some systematic trend with the basis sets. From our results we conclude that DFT methods present a computationally less expensive alternative to describe the two elementary steps of the Fenton reaction. However, choice of approximated functionals and basis sets must be carefully done and the provided benchmark allows a systematic validation of the electronic structure method to be employed


Sign in / Sign up

Export Citation Format

Share Document