Guided wave‐based cable damage detection using wave energy transmission and reflection

Author(s):  
Zhi‐Feng Tang ◽  
Xiao‐Dong Sui ◽  
Yuan‐Feng Duan ◽  
Peng‐fei Zhang ◽  
Chung Bang Yun
2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Siavash Shoja ◽  
Viktor Berbyuk ◽  
Anders Boström

In this study, energy transmission of the guided waves propagating in composite sandwich structures is investigated in a wide range of frequencies using numerical simulations. The effects of different potential defects on the guided wave energy transmission are explored in such structures. Furthermore, the accuracy of homogenization methods for finite element modelling of guided wave propagation in sandwich structures is studied with the aim of reducing the computational burden of the simulations in the low range of frequencies. A 2D finite element model is developed and verified by comparing the results with the dispersion curves. In order to examine homogenization methods, the homogenized stiffness matrices of the sandwich material and the laminate skin are calculated using classical laminate theory. Results show that core-skin debonding causes absence of wave energy leakage from the skin to the core material in that region in a specific range of frequencies. The results are also obtained for the delamination within the skin and compared with the healthy material. Finally, for the guided waves in the low range of frequencies, it is possible to use the homogenization methods to create the finite element models and reduce the solution time.


Author(s):  
Mengru Zhang ◽  
Zhifeng Tang ◽  
Chung Bang Yun ◽  
Xiaodong Sui ◽  
Jian Chen ◽  
...  

Author(s):  
Shi Yan ◽  
Binbin He ◽  
Naizhi Zhao

Pipeline structure may generate damages during its service life due to the influence of environment or accidental loading. The damages need to be detected and repaired if they are severe enough to influence the transportation work. Non-destructive detection using smart materials combined with suitable diagonal algorithms are widely used in the field of structural health monitoring (SHM). Piezoelectric ceramics (such as Lead Zirconate Titanate, PZT) is one of the smart materials to be applied in the SHM due to the piezoelectric effect. So far, the PZT-based wave method is widely used for damage detection of structures, in particular, pipeline structures. A series of piezoelectric patches are bonded on the surface of the pipeline structure to monitor the damages such as local crack or effective area reduction due to corrosion by using diagonal waves. The damage of the pipeline structure can be detected by analysis of the received diagonal waves which peak value, phase, and arriving time can be deferent from the health ones. The response of the diagonal wave is not only correlated to the damage location through estimation of the arrival time of the wave peak, but also associated with the peak value of the wave for the reduction of wave energy as the guided wave passing through the damages. Therefore, the presence of damages in the pipeline structure can be detected by investigating the parameter change of the guided waves. The change of the wave parameters represents the attenuation, deflection and mode conversion of the waves due to the damages. In addition, the guided wave has the ability of quick detecting the damage of the pipeline structure and the simplicity of generating and receiving detection waves by using PZT patches. To verify the proposed method, an experiment is designed and tested by using a steel pipe bonded the PZT patches on the surface of it. The PZT patches consist of an array to estimate the location and level of the damage which is simulated by an artificial notch on the surface of the structure. The several locations and deep heights of the notches are considered during the test. A pair of the PZT patches are used at the same time as one is used as an actuator and the other as a sensor, respectively. A tone burst of 5 cycles of wave shape is used during the experiment. A wave generator is applied to create the proposed waves, and the waves are amplified by an amplifier to actuate the PZT patch to emit the diagonal waves with appropriately enough energy. Meanwhile, the other PZT patch is used as a sensor to receive the diagonal signals which contain the information of the damages for processing. For data processing, an index of root mean square deviation (RMSD) of the received data is used to estimate the damage level by compare of the data between the damaged and the health peak valves of the received signals. The time reversal method which aimed at increasing the efficiency of the detection is also used to detect the damage location by estimating the arrival time of the reflected wave passing with a certain velocity. The proposed method experimentally validates that it is effective for application in damage detection of pipeline structure.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 860
Author(s):  
Mikhail V. Golub ◽  
Alisa N. Shpak ◽  
Inka Mueller ◽  
Sergey I. Fomenko ◽  
Claus-Peter Fritzen

Since stringers are often applied in engineering constructions to improve thin-walled structures’ strength, methods for damage detection at the joints between the stringer and the thin-walled structure are necessary. A 2D mathematical model was employed to simulate Lamb wave excitation and sensing via rectangular piezoelectric-wafer active transducers mounted on the surface of an elastic plate with rectangular surface-bonded obstacles (stiffeners) with interface defects. The results of a 2D simulation using the finite element method and the semi-analytical hybrid approach were validated experimentally using laser Doppler vibrometry for fully bonded and semi-debonded rectangular obstacles. A numerical analysis of fundamental Lamb wave scattering via rectangular stiffeners in different bonding states is presented. Two kinds of interfacial defects between the stiffener and the plate are considered: the partial degradation of the adhesive at the interface and an open crack. Damage indices calculated using the data obtained from a sensor are analyzed numerically. The choice of an input impulse function applied at the piezoelectric actuator is discussed from the perspective of the development of guided-wave-based structural health monitoring techniques for damage detection.


2013 ◽  
Vol 395-396 ◽  
pp. 787-791
Author(s):  
Jing Wu ◽  
Wei Wei Zhang

This paper aims to develop a method to identify the damage location in circumference direction of a pipe using mode transformation of longitudinal guided wave. The corrosion-like damage in bimetal pipe is considered. Case study that damage detection for a bimetal pipe is used to show the validity and advantage of the proposed method. It can be found that the axially symmetric mode guided wave encounter the damage and the three modes were received in reflection. The damage location in circumferential directions could be identified by conversed modes measured at one position. The simulation shows a good performance.


Abstract. Micro-damages such as pores, closed delamination/debonding and fiber/matrix cracks in carbon fiber reinforced plastics (CFRP) are vital factors towards the performance of composite structures, which could collapse if defects are not detected in advance. Nonlinear ultrasonic technologies, especially ones involving guided waves, have drawn increasing attention for their better sensitivity to early damages than linear acoustic ones. The combination of nonlinear acoustics and guided waves technique can promisingly provide considerable accuracy and efficiency for damage assessment and materials characterization. Herein, numerical simulations in terms of finite element method are conducted to investigate the feasibility of micro-damage detection in multi-layered CFRP plates using the second harmonic generation (SHG) of asymmetric Lamb guided wave mode. Contact acoustic nonlinearity (CAN) is introduced into the constitutive model of micro-damages in composites, which leads to the distinct SHG compared with material nonlinearity. The results suggest that the generated second order harmonics due to CAN could be received and adopted for early damage evaluation without matching the phase of the primary waves.


2019 ◽  
Vol 9 (5) ◽  
pp. 1028 ◽  
Author(s):  
Pengfei Zhang ◽  
Zhifeng Tang ◽  
Fuzai Lv ◽  
Keji Yang

Ultrasonic guided waves (UGWs) have attracted attention in the nondestructive testing and structural health monitoring (SHM) of multi-wire cables. They offer such advantages as a single measurement, wide coverage of the acoustic field, and long-range propagation ability. However, the mechanical coupling of multi-wire structures complicates the propagation behaviors of guided waves and signal interpretation. In this paper, UGW propagation in these waveguides is investigated theoretically, numerically, and experimentally from the perspective of dispersion and wave structure, contact acoustic nonlinearity (CAN), and wave energy transfer. Although the performance of all possible propagating wave modes in a multi-wire cable at different frequencies could be obtained by dispersion analysis, it is ineffective to analyze the frequency behaviors of the wave signals of a certain mode, which could be analyzed using the CAN effect. The CAN phenomenon of two mechanically coupled wires in contact was observed, which was demonstrated by numerical guided wave simulation and experiments. Additionally, the measured guided wave energy of wires located in different layers of an aluminum conductor steel-reinforced cable accords with the theoretical prediction. The model of wave energy distribution in different layers of a cable also could be used to optimize the excitation power of transducers and determine the effective monitoring range of SHM.


Sign in / Sign up

Export Citation Format

Share Document