Wood moisture monitoring and classification in kiln‐dried timber

Author(s):  
Sohrab Rahimi ◽  
Vahid Nasir ◽  
Stavros Avramidis ◽  
Farrokh Sassani
Keyword(s):  
TAPPI Journal ◽  
2013 ◽  
Vol 12 (1) ◽  
pp. 45-50 ◽  
Author(s):  
LAURENCE SCHIMLECK ◽  
KIM LOVE-MYERS ◽  
JOE SANDERS ◽  
HEATH RAYBON ◽  
RICHARD DANIELS ◽  
...  

Many forest products companies in the southeastern United States store large volumes of roundwood under wet storage. Log quality depends on maintaining a high and constant wood moisture content; however, limited knowledge exists regarding moisture variation within individual logs, and within wet decks as a whole, making it impossible to recommend appropriate water application strategies. To better understand moisture variation within a wet deck, time domain reflectometry (TDR) was used to monitor the moisture variation of 30 southern pine logs over an 11-week period for a wet deck at the International Paper McBean woodyard. Three 125 mm long TDR probes were inserted into each log (before the deck was built) at 3, 4.5, and 7.5 m from the butt. The position of each log within the stack was also recorded. Mixed-effects analysis of variance (ANOVA) was used to examine moisture variation over the study period. Moisture content varied within the log, while position within the stack was generally not significant. The performance of the TDR probes was consistent throughout the study, indicating that they would be suitable for long term (e.g., 12 months) monitoring.


2021 ◽  
Vol 1038 ◽  
pp. 336-344
Author(s):  
Olena Pinchevska ◽  
Andriy Spirochkin ◽  
Denys Zavialov ◽  
Rostislav Oliynyk

The reasons of white spots appearance in the middle of oak timber are determined. These white spots reduce the cost of the lamina made of oak timbers - the front covering of floorboards. It is proposed to intensify the drying process by using oscillating drying schedules to avoid this defect. A method for calculating the duration of such drying is proposed. This method includes the peculiarities of heating and cooling periods kinetics of oak timbers with 25 mm and 30 mm thickness. The inexpediency of using the oscillation of the drying agent parameters in the range of wood moisture content below 20% has been established. An adequate model for calculating wood temperature and air humidity during wood heating and cooling periods has been developed using heat and mass transfer criteria and experimentally determined oak wood moisture conductivity coefficient. Based on the results of theoretical and experimental studies oscillating drying schedules of different thickness oak timbers are offered. Tests of the proposed schedules in industrial conditions showed no discoloration of the central layers of European oak (Quercus robur) timbers. The drying process duration was reduced by 1.5–2.4 times and energy consumption were reduced by 1.53 times.


2008 ◽  
Vol 84 (3) ◽  
pp. 392-400
Author(s):  
Steen Magnussen ◽  
Dave Harrison

The number and size of checks, wood moisture content, extent of blue-stain, rot and decay was examined by stem analysis in 360 mature standing beetle-killed lodgepole pines. Trees came from three areas (Burns Lake, Quesnel, and Vanderhoof) in Central British Columbia. Each area was represented by 14 to 16 sampling areas (stands) distributed evenly across three soil moisture regimes (dry, mesic, wet). Year of death was estimated from tree ring-analysis, local knowledge and insect and disease survey maps. An approximately equal number of trees had been dead for one or two years, three or four years, or for five or more years. During the first five years since death by beetle attack the number of checks per tree increased from 2.5 to 10.2 and the average depth of checks increased from 4.3 cm to 5.1 cm. Checks were deeper, wider, and longer on the drier sites than on mesic and wet sites. Moisture content of sapwood and heartwood was near the fibre saturation point (ca 30%) one year after death and continued to decrease at a rate of approximately 1.7% per year. Both the incidence and the extent (relative to basal area) of rot and decay increased significantly with time since death. All trees had an extensive blue-stain discoloration. Deterioration of wood quality was fastest during the first two years after a beetle attack. Key words: wood checks, moisture content, blue-stain, wood quality, spiral grain, bark beetle


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1647 ◽  
Author(s):  
Edward Roszyk ◽  
Elżbieta Stachowska ◽  
Jerzy Majka ◽  
Przemysław Mania ◽  
Magdalena Broda

European ash (Fraxinus excelsior L.) is one of the species commonly used for wood thermal modification that improves its performance. The presented research aimed to investigate a moisture-dependent strength anisotropy of thermally-modified European ash in compression. Wood samples were modified at 180 °C and 200 °C. Their mechanical parameters were determined in the principal anatomical directions under dry (moisture content of 3%) and wet (moisture content above fibre saturation point) conditions. Effect of heat treatment temperature and moisture content on the ash wood mechanical parameters concerning each anatomical direction were determined. The results show that thermal treatment kept the intrinsic anisotropy of wood mechanical properties. It decreased wood hygroscopicity, which resulted in improved strength and elasticity measured for wet wood when compared to untreated and treated samples. Higher treatment temperature (200 °C) increased wood elasticity in compression in all the anatomical directions despite wood moisture content during the measurements. Multivariate analysis revealed that the modification temperature significantly affected the modulus of elasticity perpendicular to the grain, while in the case of compression strength, the statistically significant effect was observed only parallel to the grain. The results obtained can be useful from an industrial perspective and can serve as part of a database for further modelling purposes.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 2645-2655
Author(s):  
Yuehua Zhu ◽  
Yaoli Zhang ◽  
Biao Pan

The thermal conductivity and the deformation of wood from the Taxodium hybrid ‘Zhongshanshan’ were studied in the process of heat transfer. The results showed that the average thermal conductivity of this wood was 0.1257 W/(m·K) under the condition of 12% wood moisture content and 30 °C heat transfer temperature. When the testing temperature exceeded 0 °C, the thermal conductivity increased linearly with both temperature and wood moisture content and was affected by the moisture content of the wood. During the heat transfer process, the deformation of features caused repeated swelling and shrinkage in the longitudinal, radial, and tangential directions. The dimensional change was greatly affected by the wood’s moisture content and was less affected by the temperature. These results are of great meaning for the study of the heat transfer process of Taxodium hybrid ‘Zhongshanshan’ wood. Furthermore, it provides a scientific basis for the heat preservation effect, drying treatment, and pyrolysis treatment of Taxodium hybrid ‘Zhongshanshan’ wood for use as a building material.


2021 ◽  
Vol 30 (1) ◽  
pp. e002
Author(s):  
Juan I. Fernández-Golfín ◽  
Maria Conde Garcia ◽  
Marta Conde Garcia

Aim of study: To obtain improved models to predict, with an error of less than ± 2.0%, the gravimetric moisture content in four different softwoods commonly present in the Spanish and European markets, based on electrical resistance measurements. This improved moisture content estimation is useful not only for assessing the quality of wood products, especially in the case of laminated products, during the transformation and delivery process, but also for accurately monitoring the evolution of moisture in wood present in bridges and buildings, which is of great importance for its maintenance and service life improvement.Area of study: The study was carried out on samples of Scots, laricio, radiata and  maritime pines of Spanish provenances.Material and methods: On 50x50x20 mm3 solid wood samples (36 per species, 9 per condition), conditioned at 20ºC (±05ºC) and 40±5%, 65±5%, 80±5% or 90±5% Relative Humidity (RH), electrical resistance and oven-dry moisture content was measured. The Samuelsson's model was fitted to data to explain the relationship between the two variables. The accuracy of the model was evaluated by the use of an external sample.Main results: With the proposed mathematical functions the wood moisture content can be estimated with an error of ±0.9% in the four species, confirming the effectiveness of this nondestructive methodology for accurate estimation and monitoring of moisture content.Research highlights: our results allow the improvement of the moisture content estimation technique by resistance-type methodologies.Keywords: Resistance-type moisture meter; species correction.Abbreviations used: MC: Moisture content; RH: relative Humidity; R: electrical resistance; RP: wood electrical resistance measured parallel to the grain; RT: electrical resistance measured perpendicular (transversally) to the grain; GM-MC: gravimetrically measured moisture content.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1672
Author(s):  
Hannes Stolze ◽  
Mathias Schuh ◽  
Sebastian Kegel ◽  
Connor Fürkötter-Ziegenbein ◽  
Christian Brischke ◽  
...  

In this study, varying ambient climates were simulated in a test building by changing temperature and relative humidity. Beech glued laminated timber (glulam, Fagus sylvatica, L.) was freshly installed in the test building and monitoring of the change in wood moisture content of the glulam resulting from the variations in climate was carried out. Subsequently, finger-jointed beech specimens were exposed to the variations in relative humidity measured in the course of the monitoring experiment on a laboratory scale, and thus an alternating climate regime was derived from the conditions in the test building. Its influence on the delamination of the finger-joints was evaluated. In addition, it was examined whether beech finger-joints using commercial adhesive systems fulfil the normative requirements for delamination resistance according to EN 301 (2018) and whether different bonding-wood moisture levels have an effect on the delamination of the finger-joints. In the context of the monitoring experiment, there was a clear moisture gradient in the beech glulam between the inner and near-surface wood. The applied adhesive systems showed almost the same delamination resistance after variation of relative humidity. The normative requirements were met by all PRF-bonded and by most PUR-bonded beech finger-joints with higher bonding wood moisture content.


2006 ◽  
Vol 10 (3) ◽  
pp. 27-38 ◽  
Author(s):  
Janis Zandersons ◽  
Aivars Zhurinsh ◽  
Galina Dobele ◽  
Baiba Spince ◽  
Ausma Tardenaka ◽  
...  

The release of arsenic during pyrolysis of CCA(chromated copper arsenate)-treated wood starts at a temperature below 327 ?C, but up to 600 ?C only 30-40% of the arsenic initially present in the wood is volatilised. The changes of heating rate, wood moisture, degree of the comminution and methods of pyrolysis (fixed bed or mechanically pushed and loosened bulk of chips) do not substantially change the situation. The release of arsenic can be eliminated or strongly reduced by use of carbonisation catalysts. The ways and means of metals regeneration or practical use of this contaminated charcoal are still to be elucidated. A substantial decrease of the As, Cr, and Cu content in charcoal from 2800-5550 ppm, 3700-14300 ppm, and 3500-8800 ppm, to 61 ppm, 1014 ppm, and 282 ppm, respectively, was achieved by carbonisation of the previously leached wood specimens. The leachability of CCA-salts from the wood treated with diluted sulphuric acid is good, and the amount of the leached-out metals exceeds 90-95%. Ultrasound treatment improves the leachability, although the effect is not high enough to achieve the full elimination of metals, especially chromium, to meet the concentration levels in charcoal set by legislation.


Sign in / Sign up

Export Citation Format

Share Document