scholarly journals Human Placenta-Derived Adherent Cells Prevent Bone loss, Stimulate Bone formation, and Suppress Growth of Multiple Myeloma in Bone

Stem Cells ◽  
2011 ◽  
Vol 29 (2) ◽  
pp. 263-273 ◽  
Author(s):  
Xin Li ◽  
Wen Ling ◽  
Angela Pennisi ◽  
Yuping Wang ◽  
Sharmin Khan ◽  
...  
Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 646-646
Author(s):  
Xin Li ◽  
Wen Ling ◽  
Angela Pennisi ◽  
Jianmei Chen ◽  
Sharmin Khan ◽  
...  

Abstract Induction of osteolytic bone disease in multiple myeloma (MM) is caused by activation of osteoclastogenesis and suppression of osteoblastogenesis. Bone formation is reduced mainly through production of inhibitors of osteoblast differentiation by MM cells and by impaired osteogenic differentiation of endogenous mesenchymal stem cells (MSCs). Recently, human placenta has emerged as a potentially valuable source of progenitor cells for multiple therapeutic purposes, including bone repair and cancer (Parolini et al., Stem Cells26:300–311, 2008). The aim of the study was to investigate the effects of human placenta-derived adherent cells (PDAC™) on MM bone disease and tumor growth in the SCID-rab mouse model for MM. PDAC™ are mesenchymal like adherent cells isolated from postpartum human placenta and capable of supporting bone formation in vivo. Bone disease was evaluated by measurements of bone mineral density (BMD) and visualized by X-rays. MM growth was determined by human immunoglobulin (hIg) ELISA and live animal imaging. For in vivo tracking PDAC™ or our stroma-dependent BN MM cell line was transduced with a luciferase/GFP reporter in a lentiviral vector. In the first in vivo experiment, 10 SCID-rab mice were engrafted with a patient’s MM cells. Following establishment of MM and detection of bone disease, luciferase-expressing PDAC™ (1×106 cells/bone) or phosphate-buffered saline (PBS) were injected directly into implanted myelomatous bones in SCID-rab mice (5 mice/group). At experiment’s end (5 wk after cytotherapy) PDAC™ could be detected in mice by live animal imaging. Whereas in control mice, BMD of the implanted bone was reduced from pretreatment levels by 8±4%, administration of PDAC™ resulted in increased BMD of the implanted bone in all mice by 132±20% from pretreatment levels (p<0.0006). Levels of hIg in mice sera (tumor burden) at experiment’s end were 202±56 μg/ml and 12±4 μg/ml in PBS- and PDAC™ -treated hosts, respectively (p<0.007). In the second in vivo experiment hosts engrafted with our luciferase-expressing BN MM line (Li et al., BJH 2007) were similarly injected with PDAC™ or PBS (8 mice/group). Six wk following treatment the BMD of the implanted bone in the control PBS group was reduced by 31±33% (p<0.0009) from pretreatment levels while in PDAC™ –treated group it was slightly reduced by 2±6% from pretreatment levels. Treatment with PDAC™ had no effect on in vivo growth of the BN MM cell line, indicating that prevention of bone disease by PDAC™ was not a consequence of reduced MM. In contrast to fetal MSCs, PDAC™ expressed high levels of OPG (>30 fold) and low levels of RANKL (<5 fold) as determined by qRT-PCR. Differentiation of osteoclast precursors in media supplemented with RANKL and M-CSF was reduced in the presence of PDAC™ or their conditioned media by 60±6% (p<0.004), an effect that was partially blocked by OPG neutralizing antibody (p<0.04). PDAC™ also induced apoptosis of osteoclast precursors as determined by annexin V/PI staining. We conclude that PDAC™ prevent bone loss and promote bone formation in myelomatous bone through simultaneous inhibition of osteoclastogenesis and stimulation of osteoblastogenesis, and that engraftment of PDAC™ inhibits growth of primary MM in vivo.


2019 ◽  
Vol 3 (s1) ◽  
pp. 24-24
Author(s):  
Rubens Sautchuk ◽  
Brianna H. Shares ◽  
Roman A. Eliseev

OBJECTIVES/SPECIFIC AIMS: The study aims to further investigate how cyclophilin D (CypD), the key mPTP opening regulator, affects BMSCs fate and to determine potential regulatory mechanisms involved in CypD regulation during osteogenesis. METHODS/STUDY POPULATION: We evaluated CypD mRNA expression in mouse BMSCs and in osteogenic-like (OL) cells during the course of OB differentiation. CypD protein level was also probed. Moreover, BMSCs had their mPTP activity recorded during osteoinduction. We further analyzed the effect of CypD genetic deletion on osteogenesis in vitro and in vivo. For our in vivo model, we performed the ectopic bone formation assay to asses differences in ossicle formation when CypD KO BMSCs were transplanted compared to wild type littermate BMSCs. In our in vitro model, we transfected OL cells with either CypD gain of function or CypD loss of function vector and measured their osteogenic differentiation potential. Additionally, we treated BMSCs with CypD inhibitor and compare to non-treated BMSCs for mineralization level. To determine potential regulatory mechanisms involved in CypD regulation, we analyzed the CypD gene (Ppif) promoter for potential transcription factor (TF) binding sites and found multiple Smad-binding elements within this promoter. Smads (Smad1, 5, 8) are TFs downstream from Bone Morphogenic Protein (BMP) signaling pathway that transmit cell differentiation signaling, and exert either activating or inhibitory effects on a variety of genes. We also transfect OL cells with Smad1 vector and analyzed for CypD mRNA levels. RESULTS/ANTICIPATED RESULTS: - Our data showed that CypD mRNA levels decreased in both primary cells and OL cells at day 7 and day 14 in osteogenic media. - Osteogenic induction also decreased mPTP activity. - In vivo ectopic bone formation assay showed increased ossicle fo DISCUSSION/SIGNIFICANCE OF IMPACT: Our data suggest that downregulation of CypD increases OB differentiation due to improved OxPhos activity led by mPTP closure. Our results corroborate reports of CypD downregulation and mPTP closure during neuronal differentiation in developing rat brains as well as in cardiomyocyte differentiation in developing mouse hearts. Our studies also suggest a yet unknown mechanism linking differentiation signaling with mitochondrial function – BMP/Smad mediated downregulation of CypD transcription. As initially mentioned, in a previous study, our lab showed that CypD KO mice present higher mitochondrial function and osteogenicity in aged BMSCs and less osteoporosis burden. Taken together, these results suggest that CypD can be a potential target to prevent bone loss in aging.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3353
Author(s):  
Emre Sahin ◽  
Cemal Orhan ◽  
Tansel Ansal Balci ◽  
Fusun Erten ◽  
Kazim Sahin

Magnesium (Mg) deficiency may affect bone metabolism by increasing osteoclasts, decreasing osteoblasts, promoting inflammation/oxidative stress, and result in subsequent bone loss. The objective of the present study was to identify the molecular mechanism underlying the bone protective effect of different forms of Mg (inorganic magnesium oxide (MgO) versus organic magnesium picolinate (MgPic) compound) in rats fed with a high-fat diet (HFD). Forty-two Wistar albino male rats were divided into six group (n = 7): (i) control, (ii) MgO, (iii) MgPic, (iv) HFD, (v) HFD + MgO, and (vi) HFD + MgPic. Bone mineral density (BMD) increased in the Mg supplemented groups, especially MgPic, as compared with the HFD group (p < 0.001). As compared with the HFD + MgO group, the HFD + MgPic group had higher bone P (p < 0.05) and Mg levels (p < 0.001). In addition, as compared to MgO, MgPic improved bone formation by increasing the levels of osteogenetic proteins (COL1A1 (p < 0.001), BMP2 (p < 0.001), Runx2 (p < 0.001), OPG (p < 0.05), and OCN (p < 0.001), IGF-1 (p < 0.001)), while prevented bone resorption by reducing the levels of RANK and RANKL (p < 0.001). In conclusion, the present data showed that the MgPic could increase osteogenic protein levels in bone more effectively than MgO, prevent bone loss, and contribute to bone formation in HFD rats.


2014 ◽  
pp. 421-427 ◽  
Author(s):  
I. ŽOFKOVÁ ◽  
P. MATUCHA

Bone metabolism is regulated by interaction between two skeletal cells – osteoclasts and osteoblasts. Function of these cells is controlled by a number of humoral factors, including neurohormones, which ensure equilibrium between bone resorption and bone formation. Influence of neurohormones on bone metabolism is often bimodal and depends on the tissue, in which the hormone is expressed. While hypothalamic beta-1 and beta-2-adrenergic systems stimulate bone formation, beta-2 receptors in bone tissue activate osteoclatogenesis and increases bone resorption. Chronic stimulation of peripheral beta-2 receptors is known to quicken bone loss and alter the mechanical quality of the skeleton. This is supported by the observation of a low incidence of hip fractures in patients treated with betablockers. A bimodal osteo-tropic effect has also been observed with serotonin. While serotonin synthetized in brain has osteo-anabolic effects, serotonin released from the duodenum inhibits osteoblast activity and decreases bone formation. On the other hand, both cannabinoid systems (CB1 receptors in the brain and CB2 in bone tissue) are unambiguously osteo-protective, especially with regard to the aging skeleton. Positive (protective) effects on bone have also been shown by some hypophyseal hormones, such as thyrotropin (which inhibits bone resorption) and adrenocorticotropic hormone and oxytocin, both of which stimulate bone formation. Low oxytocin levels have been shown to potentiate bone loss induced by hypoestrinism in postmenopausal women, as well as in girls with mental anorexia. In addition to reviewing neurohormones with anabolic effects, this article also reviews neurohormones with unambiguously catabolic effects on the skeleton, such as neuropeptide Y and neuromedin U. An important aim of research in this field is the synthesis of new molecules that can stimulate osteo-anabolic or inhibiting osteo-catabolic processes.


2006 ◽  
Vol 50 (4) ◽  
pp. 793-801 ◽  
Author(s):  
Luiz Henrique de Gregório ◽  
Paulo G. Sampaio Lacativa ◽  
Ana Cláudia C. Melazzi ◽  
Luis Augusto Tavares Russo

Glucocorticoid-induced osteoporosis is the most frequent cause of secondary osteoporosis. Glucocorticoids cause a rapid bone loss in the first few months of use, but the most important effect of the drug is suppression of bone formation. The administration of oral glucocorticoid is associated with an increased risk of fractures at the spine and hip. The risk is related to the dose, but even small doses can increase the risk. Patients on glucocorticoid therapy lose more trabecular than cortical bone and the fractures are more frequent at the spine than at the hip. Calcium, vitamin D and activated forms of vitamin D can prevent bone loss and antiresorptive agents are effective for prevention and treatment of bone loss and to decrease fracture risk. Despite the known effects of glucocorticoids on bone, only a few patients are advised to take preventive measures and treat glucocorticoid-induced osteoporosis.


2021 ◽  
Vol 85 (2) ◽  
pp. 332-339
Author(s):  
Hui Liu ◽  
Xi Li ◽  
Jingui Lin ◽  
Miaokuo Lin

ABSTRACT Morroniside exerts a proosteogenic effect, which can prevent bone loss. However, the detailed mechanism underlying Morroniside-regulated bone formation is unclear. Morroniside can maintain cell homeostasis by promoting PI3K/Akt/mTOR signaling. The purpose of this study is to explore the significance of PI3K/Akt/mTOR signaling in Morroniside-regulated osteogenesis. The results showed that Morroniside promoted the activities of PI3K, Akt, and mTOR in osteoblast precursor MC3T3-E1. The differentiation of MC3T3-E1 to mature osteoblasts promoted by Morroniside can be reversed by the pharmacological inhibition of PI3K or mTOR. Importantly, in the presence of Morroniside, the osteoblast differentiation suppressed by PI3K inhibitor was reversed by mTOR overexpression. In vivo assays showed that in bone tissue of ovariectomized mice, Morroniside-enhanced osteoblast formation was reversed by the pharmacological inhibition of PI3K or mTOR. In conclusion, Morroniside can promote the osteogenesis through PI3K/Akt/mTOR signaling, which provides a novel clue for the strategy of Morroniside in treating osteoporosis.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1136-1136 ◽  
Author(s):  
Jesus Delgado-Calle ◽  
Judith Anderson ◽  
Meloney D. Cregor ◽  
Dan Zhou ◽  
Lilian I. Plotkin ◽  
...  

Abstract In Multiple myeloma (MM) plasma cells grow in the bone marrow and induce localized lytic lesions due to increased bone resorption and suppressed bone formation. High levels of Sclerostin, a potent inhibitor of bone formation, are found in sera of MM patients. The expression of Sost/Scleorstin by osteocytes is also increased in mice bearing MM tumors, suggesting that Sclerostin might play a role in MM-induced bone disease. The goal of this study was to examine the impact of Sost/Sclersotin on tumor growth and MM-induced bone disease. We first examined the effect of genetic deletion of Sost. Therefore, we generated global Sost KO mice in an immunodeficient background (SCID), which exhibited the expected high bone mass phenotype associated with Sost deficiency. 6-wk-old SostKO or WT control littermates mice were injected intratibially with 105 JJN3 human MM (hMM) cells or saline (n=7-10/group), and sacrificed after 4wks. Sost KO and WT mice injected with hMM had equivalent tumor engraftment as demonstrated by serum human kappa light chain levels. hMM-injected WT mice exhibited ~50% decrease in tibia cancellous bone volume (BV/TV) and trabecular number (Tb.N), and increased trabecular separation (Tb.Sp). In contrast, hMM-injected Sost KO mice displayed no changes in BV/TV or bone architecture. Importantly, X-ray analysis revealed that the number and area of osteolytic lesions was reduced in Sost KO by 60% and 74%, respectively, compared to WT mice. We next examined the effect of pharmacological inhibition of Sclerostin in an immunocompetent preclinical model of established MM. 6-wk-old C57BLKalwRij mice were injected intratibially with 105 5TGM1 murine MM cells (mMM) or saline. After 4wks mMM-injected mice had a 2-fold increase in the serum tumor engraftment marker IgG2b. Saline or mMM-injected mice were then treated with a Sclerostin neutralizing antibody (Scl-Ab; 15mg/kg/wk) or control antibody (IgG; n=6-10/group). After 4wks of treatment, serum IgG2b levels were similar in mMM-injected mice receiving Scl-Ab or IgG. mMM-injected mice receiving IgG injections had ~35% decreased BV/TV, Tb.N, and increased Tb.Sp. In contrast, mMM-injected mice receiving Scl-Ab displayed increased trabecular BV/TV (52%), Tb.N (22%), Tb.Th (33%) and decreased Tb.Sp (14%), results that did not differ from saline-injected mice treated with Scl-Ab. Moreover, the number of osteolytic lesions was reduced by 46% in Scl-Ab treated mice when compared to the IgG-treated group. Further, mMM-injected mice treated with IgG or Scl-Ab showed similar increases in the bone resorption markerCTX in the circulation, whereas mMM-injected mice treated with Scl-Ab had a smaller decrease in the bone formation marker P1NP in sera compared to IgG-treated mice (22 vs 45%). Consistent with the lack of effect of the Scl-Ab on MM tumor growth in vivo, Scl-Ab did not affect the proliferation or viability of MM cells in vitro. We then examined next if Scl-Ab alters the anti-myeloma activity of dexamethasone (DEX), bortezomib (BOR) and the Notch inhibitor GSIXX. As expected, DEX, BOR and GSIXX increased the number of dead mMM and hMM cells in a time- and dose-dependent manner. Importantly, the increase in the number of dead hMM and mMM cells induced by DEX, BOR and GSIXX remained unchanged when Scl-Ab was co-administered. Taken together, these results demonstrate that increased Scl production by osteocytes inhibits bone formation and contributes to MM-induced bone loss. Further, our data shows that pharmacological inhibition of Scl does not alter tumor growth or the activity of anti-myeloma drugs. These findings provide the rationale for combining Scl-Ab with anti-tumor drugs to simultaneously prevent tumor growth and the bone diseases in MM patients. Disclosures Roodman: Amgen: Consultancy.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3717-3717
Author(s):  
Xin Li ◽  
Wen Ling ◽  
Angela Pennisi ◽  
Yuping Wang ◽  
Sharmin Khan ◽  
...  

Abstract Abstract 3717 Human placenta has emerged as a valuable, uncontroversial source of transplantable cells for many cytotherapeutic purposes, including modulation of inflammation, bone repair, and cancer. Placenta-derived adherent cells (PDAC) are mesenchymal like adherent cells isolated from postpartum human placenta and capable of supporting bone formation in vivo. Multiple myeloma (MM) is closely associated with induction of bone disease and large lytic lesions, which are often not repaired and are usually the sites of relapses. The aim of the study was to evaluate the antimyeloma therapeutic potential, in vivo survival, and trafficking of PDAC in the SCID-rab model of MM-associated bone disease. SCID-rab system constructed by implanting a 4-weeks old rabbit bone into which primary human myeloma cells were directly injected (Yatta et al., Leukemia 2004; Yaccoby et al., Blood 2007). Bone disease was evaluated by measurements of bone mineral density (BMD) and X-rays. MM growth was determined by human immunoglobulin (hIg) ELISA and histologically. For in vivo tracking PDAC were transduced with a luciferase/GFP reporter in a lentiviral vector. SCID-rab mice engrafted with primary myeloma cells from 2 patients. Upon establishment of MM growth, PDAC (1×106 cells/bone) or vehicle were injected into the implanted myelomatous bone (Patient's 1, 5 mice/group; Patient's 2, 7 mice/group). While BMD of the implanted bones was significantly reduced in control hosts, intralesional PDAC cytotherapy significantly increased BMD of the implanted bones from pretreatment levels by >37% (p<0.01 versus control) and inhibited MM growth in the 2 sets of experiments (p<0.04). The bone anabolic effect of PDAC was associated with increased number of osteoblasts (p<0.003) and reduced number of osteoclasts (p<0.004). Intralesional PDAC cytotherapy also promoted bone formation in nonmyelomatous SCID-rab mice. Intralesional but not subcutaneous engraftment of PDAC inhibited bone disease and tumor growth in SCID-rab mice. In contrast to intra-bone injection in SCID-rab mice, intra-tumor injection of PDAC had no effect on subcutaneous growth of the H929 myeloma cell line in SCID mice (8 mice/group). Live-animal imaging revealed that the majority of PDAC disappeared from the injected bones within 4 weeks. To test their systemic behavior, PDAC were intravenously injected into 18 SCID-rab mice engrafted with H929 myeloma cells. The presences of PDAC in various organs were evaluated 1, 2 and 7 days after injection. Ex vivo bioluminescence analysis of the implanted myelomatous bones detected PDAC in two of five bones on day 1, in four of four bones on day 2, and in four of nine bones on day 7. Intravenously injected PDAC were also detected in lungs not in any other murine tissues. Immunohistochemical staining for GFP in myelomatous bone sections detected GFP-expressing PDAC in rabbit marrow areas infiltrated with myeloma cells, supporting bioluminescence analysis. Our study suggest that PDAC stimulate bone formation by acting as bystander cells that increase endogenous osteoblastogenesis and inhibit osteoclastogenesis, and that alteration of the bone marrow microenvironment by PDAC attenuates growth of MM. PDAC cytotherapy is a promising therapeutic approach for myeloma bone disease. Disclosures: Khan: Celgene Cellular Therapeutics: Research Funding. Heidaran:Celgene Cellular Therapeutics: Employment. Pal:Celgene Cellular Therapeutics: Employment. Zhang:Celgene Cellular Therapeutics: Employment. He:Celgene Cellular Therapeutics: Employment. Zeitlin:Celgene Cellular Therapeutics: Employment. Abbot:Celgene Cellular Therapeutics: Employment. Faleck:Celgene Cellular Therapeutics: Employment. Hariri:Celgene Cellular Therapeutics: Employment.


2020 ◽  
Vol 63 (22) ◽  
pp. 13680-13694
Author(s):  
Lucile Mounier ◽  
Anne Morel ◽  
Yann Ferrandez ◽  
Jukka Morko ◽  
Jukka Vääräniemi ◽  
...  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 119-119 ◽  
Author(s):  
Michaela R. Reagan ◽  
Michelle McDonald ◽  
Rachael Terry ◽  
Jessica Pettitt ◽  
Lawrence Le ◽  
...  

Abstract Multiple myeloma (MM) is a malignancy of plasma cells and is characterized by unrestricted tumor cell growth in bone marrow (BM). MM causes destructive osteolytic lesions causing bone fracture, bone pain, hypercalcaemia, and nerve-compression, resulting from increased bone resorption and suppressed bone formation. Despite the introduction of agents to inhibit bone resorption, such as bisphosphonates, which prevent further bone loss, approaches to preventing osteoblast suppression and repair bone lesions are limited and there are no agents available clinically. The wnt/β-catenin pathway plays a critical role in the regulation of bone formation. Production of the soluble wnt antagonist dickkopf1 (Dkk1) by MM cells has been implicated in MM inhibition of bone formation. As such, Anti-Dkk1 treatment prevents bone disease in pre-clinical models of MM and is in early clinical development. However, Dkk1 is not expressed by all myeloma cells; hence only a proportion of patients may respond to anti-Dkk1 therapy. Sclerostin (Scl) is a soluble wnt antagonist whose expression, unlike Dkk1, is restricted to osteocytes; therefore Scl targeted agents may have less off target effects. Anti-Sclerostin (Anti-Scl) treatment increased bone formation and bone volume in experimental models of osteoporosis, and increased bone mineral density in phase II osteoporosis clinical trials. However, Anti-Scl treatment effects on myeloma bone disease are unknown. Further, cells of the BM such as osteoblasts have been implicated in the regulation of MM cell survival and growth. Thus, in the present study we explored the potential for Anti-Scl therapy to prevent MM induced bone loss and inhibit MM growth in both murine and human xenograft MM models. Female C57BLKalwRij mice (n=8) were injected i.v, with 5TGM1/eGFP murine MM cells (1×106) and female SCID/beige mice (n=10) were injected i.v. with MM1S/Luc/eGFP human MM cells (4 × 106). 24 hours later, naïve mice (without tumor cells) or mice bearing MM cells were treated with anti-sclerostin antibody (Anti-Scl) (100mg/kg i.v) or control antibody. Mice were sacrificed at day 21 (MM1S) or day 28 (5TGM1) and the effect of Anti-Scl on bone structure in the femora and vertebrae were determined by microCT analysis. The effect of Anti-Scl on MM burden was determined by bioluminescent imaging (BLI) performed twice weekly from week 1 using a Xenogen IVIS system, whereas MM burden in 5TGM1/eGFP bearing mice was examined by FACS analysis. Anti-Scl treatment in naïve C57BLKalwRij mice increased trabecular bone volume fraction (BV/TV, 39%, p<0.01, Fig. 1B) in the femur, which was mediated by increases in trabecular thickness (Tb.Th, 42%, p<0.01). Treatment also increased cortical bone volume (22%, p<0.01) in the femur and increased trabecular BV/TV in the vertebra (32%, p<0.01). This demonstrated the potent bone anabolic effect of Anti-Scl independent of myeloma cells. Injection of 5TGM1 cells resulted in a decrease in femoral trabecular BV/TV (30%, p<0.01) through a 30% reduction in trabecular number (TbN) (p<0.01), but no effect on Tb.Th (Figs. 1A and B), whilst also reducing cortical bone volume (BV) by 6% (p<0.05). Vertebrae were also impacted by 5TGM1 tumor growth with a 29% reduction in Tb BV/TV through a 23% reduction in Tb.Th (p<0.01) and also a 15% reduction in cortical BV (p<0.01). Treatment of 5TGM1-bearing mice with Anti-Scl increased trabecular BV/TV (46%, p<0.01) and Tb.Th (30%, p<0.01) to values equivalent to femora of naïve, non-tumor bearing, control mice. Treatment with Anti-Scl also increased cortical BV by 16% (p<0.01), vertebral Tb BV/TV by 29% and cortical BV by 36% in 5TGM1 burdened mice (p<0.01). Treatment of 5TGM1-bearing mice with Anti-Scl had no effect on the proportion 5TGM1/eGFP cells in the BM or spleen. However Anti-Scl treatment significantly suppressed tumor progression in the MM1S model at 3, 3.5 and 4 weeks post cell injection, as determined by BLI imaging (p=0.02, wk 3; p=0.0019, wk 3.5, and p=0.0068, wk 4, 2-tailed t-tests, Fig. 1C). These data demonstrate that Anti-Scl antibody treatment can prevent development of myeloma bone disease. Furthermore, Anti-Scl treatment also suppressed tumor growth, supporting the possibility that targeting the BM microenvironment with this agent may slow disease progression. Our findings highlight the potential clinical application of Anti-Scl antibody treatment in patients with MM and other bone destructive cancers. Disclosures Kneissel: Novartis Institutes for Biomedical Research, Novartis Pharma AG: Employment. Kramer:Novartis Pharma AG: Employment. Brooks:Spouse works for Boston Biomedical Inc: Employment.


Sign in / Sign up

Export Citation Format

Share Document