The role of oxidative stress in Sudan IV-induced DNA damage in human liver-derived HepG2 cells

2011 ◽  
Vol 26 (3) ◽  
pp. 292-299 ◽  
Author(s):  
Yue Zhang ◽  
Yu An ◽  
Liping Jiang ◽  
Chengyan Geng ◽  
Jun Cao ◽  
...  
2013 ◽  
Vol 30 (5) ◽  
pp. 530-537 ◽  
Author(s):  
Yuntao Bai ◽  
Li‐Ping Jiang ◽  
Xiao‐Fang Liu ◽  
Dong Wang ◽  
Guang Yang ◽  
...  

2018 ◽  
Vol 26 ◽  
pp. 42-48 ◽  
Author(s):  
Grace A. Odongo ◽  
Nina Schlotz ◽  
Susanne Baldermann ◽  
Susanne Neugart ◽  
Benard Ngwene ◽  
...  

2016 ◽  
Vol 16 (4) ◽  
pp. 563-571 ◽  
Author(s):  
Yahya Hasan Hobani

Background. Murraya koenigii (L.) Spreng, is a significant herb of traditional Ayurvedic system of medicine. Koenimbine, a carbazole alkaloid isolated from this plant holds antiproliferative and apoptotic effects. The aim of this study was to assess koenimbine-induced DNA damage and to clarify the role of free radicals in cell death mechanisms, using HepG2 cells. Methods. The level of cytotoxicity was assayed by MTT assay. To elucidate the role of glutathione (GSH), the intracellular GSH level was analyzed. The effect of koenimbine in the cell mitochondria was evaluated using mitochondrial membrane potential (MMP) changes. Single cell gel electrophoresis assay was used to examine the level of DNA damage. Heat shock proteins, Hsp 70 and Hsp 90 expressions were checked at mRNA and protein level. Ascorbic acid and catalase were used as control antioxidants. Results. It was observed that koenimbine considerably increased DNA damage in HepG2 cells at subcytotoxic concentrations. Koenimbine induced the increased levels of reactive oxygen species (ROS) and reduction of GSH level in HepG2 cells, together with time-dependent loss of MMP. In addition, results clearly showed that koenimbine encouraged cells to express Hsp 70 and Hsp 90 in a concentration-dependent manner up to a concentration of 100 µM and a time-dependent manner at 24-hour incubation both at transcriptional and translational levels. The antioxidant capacity of ascorbic acid was found to be not as prominent as to catalase throughout the study. Conclusion. Based on these data it can be concluded that koenimbine causes DNA strand breaks in HepG2 cells, probably through oxidative stress. Moreover, the oxidative stress induced was closely associated with MMP reduction and GSH depletion associated with HSP modulation at subcytotoxic concentration.


2008 ◽  
Vol 42 (4) ◽  
pp. 354-361 ◽  
Author(s):  
Longjie Li ◽  
Liping Jiang ◽  
Chengyan Geng ◽  
Jun Cao ◽  
Laifu Zhong

Toxicon ◽  
2009 ◽  
Vol 54 (4) ◽  
pp. 513-518 ◽  
Author(s):  
Xiaoou Zhang ◽  
Liping Jiang ◽  
Chengyan Geng ◽  
Jun Cao ◽  
Laifu Zhong

2007 ◽  
Vol 26 (3) ◽  
pp. 203-212 ◽  
Author(s):  
Somiranjan Ghosh ◽  
Supriyo De ◽  
Sisir K. Dutta

Polychlorinated biphenyls (PCBs) are a group of persistent and widely distributed environmental pollutants that have various deleterious effects, e.g., neurotoxic, endocrine disruption and reproductive abnormalities, including cancers. Chronic exposure to environmentally hazardous chemicals like PCBs is of great concern to human health. It has been reported earlier that apoptotic proteins change in rats under chronic PCB treatment. It is of importance to determine if chronically exposed human cells develop a different protein expression. In the present study, the authors chronically exposed metabolically competent human liver (HepG2) cells at 50 to 100 μM to examine the role of the well-known environmentally hazardous pollutant non-coplanar 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB-153) to study cell death. After 12 weeks of exposure these cells showed significant changes in apoptotic death in subsequent trypan blue growth assay, fluorescence microscopy, DNA fragmentation, and immunoblotting studies. Interestingly, chronically exposed cells showed marked differences in apoptotic and/or death-related proteins (e.g., Bcl2, Bak, and the pro and active forms of caspase-9, which were up-regulated), in contrast to acutely exposed (i.e., 48-h PCB-153 exposed) cells, which maintained linear growth despite repeated exposures. Similarly, tumor suppressor protein p53, proto-oncogene c- myc, and cell cycle regulator protein p21 were also up-regulated compared to nonchronically exposed HepG2 Cells. The results indicated that PCB-153–induced chronic exposure significantly altered different apoptotic (e.g., Bcl2, Bak, caspase-3) and tumor suppressor (e.g., p21, p53, and c-myc) proteins in the cellular model. These results suggest that chronic exposure to PCB-153 can induce cell survival by altering several apoptotic and tumor suppressor proteins.


Toxins ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 43 ◽  
Author(s):  
Junhua Yang ◽  
Wenbo Guo ◽  
Jianhua Wang ◽  
Xianli Yang ◽  
Zhiqi Zhang ◽  
...  

T-2 toxin, as a highly toxic mycotoxin to humans and animals, induces oxidative stress and apoptosis in various cells and tissues. Apoptosis and mitochondrial fusion/fission are two tightly interconnected processes that are crucial for maintaining physiological homeostasis. However, the role of mitochondrial fusion/fission in apoptosis of T-2 toxin remains unknown. Hence, we aimed to explore the putative role of mitochondrial fusion/fission on T-2 toxin induced apoptosis in normal human liver (HL-7702) cells. T-2 toxin treatment (0, 0.1, 1.0, or 10 μg/L) for 24 h caused decreased cell viability and ATP concentration and increased production of (ROS), as seen by a loss of mitochondrial membrane potential (∆Ψm) and increase in mitochondrial fragmentation. Subsequently, the mitochondrial dynamic imbalance was activated, evidenced by a dose-dependent decrease and increase in the protein expression of mitochondrial fusion (OPA1, Mfn1, and Mfn2) and fission (Drp1 and Fis1), respectively. Furthermore, the T-2 toxin promoted the release of cytochrome c from mitochondria to cytoplasm and induced cell apoptosis triggered by upregulation of Bax and Bax/Bcl-2 ratios, and further activated the caspase pathways. Taken together, these results indicate that altered mitochondrial dynamics induced by oxidative stress with T-2 toxin exposure likely contribute to mitochondrial injury and HL-7702 cell apoptosis.


2012 ◽  
Vol 303 (7) ◽  
pp. L557-L566 ◽  
Author(s):  
Hongwei Yao ◽  
Irfan Rahman

Histone deacetylase 2 (HDAC2) is a class I histone deacetylase that regulates various cellular processes, such as cell cycle, senescence, proliferation, differentiation, development, apoptosis, and glucocorticoid function in inhibiting inflammatory response. HDAC2 has been shown to protect against DNA damage response and cellular senescence/premature aging via an epigenetic mechanism in response to oxidative stress. These phenomena are observed in patients with chronic obstructive pulmonary disease (COPD). HDAC2 is posttranslationally modified by oxidative/carbonyl stress imposed by cigarette smoke and oxidants, leading to its reduction via an ubiquitination-proteasome dependent degradation in lungs of patients with COPD. In this perspective, we have discussed the role of HDAC2 posttranslational modifications and its role in regulation of inflammation, histone/DNA epigenetic modifications, DNA damage response, and cellular senescence, particularly in inflammaging, and during the development of COPD. We have also discussed the potential directions for future translational research avenues in modulating lung inflammaging and cellular senescence based on epigenetic chromatin modifications in diseases associated with increased oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document