scholarly journals Microarray gene expression profiling in colorectal (HCT116) and hepatocellular (HepG2) carcinoma cell lines treated withMelicope ptelefolialeaf extract reveals transcriptome profiles exhibiting anticancer activity

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5203 ◽  
Author(s):  
Mohammad Faujul Kabir ◽  
Johari Mohd Ali ◽  
Onn Haji Hashim

BackgroundWe have previously reported anticancer activities ofMelicope ptelefolia(MP) leaf extracts on four different cancer cell lines. However, the underlying mechanisms of actions have yet to be deciphered. In the present study, the anticancer activity of MP hexane extract (MP-HX) on colorectal (HCT116) and hepatocellular carcinoma (HepG2) cell lines was characterized through microarray gene expression profiling.MethodsHCT116 and HepG2 cells were treated with MP-HX for 24 hr. Total RNA was extracted from the cells and used for transcriptome profiling using Applied Biosystem GeneChip™ Human Gene 2.0 ST Array. Gene expression data was analysed using an Applied Biosystems Expression Console and Transcriptome Analysis Console software. Pathway enrichment analyses was performed using Ingenuity Pathway Analysis (IPA) software. The microarray data was validated by profiling the expression of 17 genes through quantitative reverse transcription PCR (RT-qPCR).ResultsMP-HX induced differential expression of 1,290 and 1,325 genes in HCT116 and HepG2 cells, respectively (microarray data fold change, MA_FC ≥ ±2.0). The direction of gene expression change for the 17 genes assayed through RT-qPCR agree with the microarray data. In both cell lines, MP-HX modulated the expression of many genes in directions that support antiproliferative activity. IPA software analyses revealed MP-HX modulated canonical pathways, networks and biological processes that are associated with cell cycle, DNA replication, cellular growth and cell proliferation. In both cell lines, upregulation of genes which promote apoptosis, cell cycle arrest and growth inhibition were observed, while genes that are typically overexpressed in diverse human cancers or those that promoted cell cycle progression, DNA replication and cellular proliferation were downregulated. Some of the genes upregulated by MP-HX include pro-apoptotic genes (DDIT3, BBC3, JUN), cell cycle arresting (CDKN1A, CDKN2B), growth arrest/repair (TP53, GADD45A) and metastasis suppression (NDRG1). MP-HX downregulated the expression of genes that could promote anti-apoptotic effect, cell cycle progression, tumor development and progression, which include BIRC5, CCNA2, CCNB1, CCNB2, CCNE2, CDK1/2/6, GINS2, HELLS, MCM2/10 PLK1, RRM2 and SKP2. It is interesting to note that all six top-ranked genes proposed to be cancer-associated (PLK1, MCM2, MCM3, MCM7, MCM10 and SKP2) were downregulated by MP-HX in both cell lines.DiscussionThe present study showed that the anticancer activities of MP-HX are exerted through its actions on genes regulating apoptosis, cell proliferation, DNA replication and cell cycle progression. These findings further project the potential use of MP as a nutraceutical agent for cancer therapeutics.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3783-3783
Author(s):  
Alexander Hoellein ◽  
Sabine Steidle ◽  
Mohammad Fellahi ◽  
Stephanie Schoeffmann ◽  
Martina Rudelius ◽  
...  

Abstract Myc oncoproteins (c-Myc, N-Myc and L-Myc) are transcription factors that regulate cell growth, cell division and metabolism under physiologic conditions. Myc overexpression is a hallmark of cancer, present in most advanced tumors, and associated with poor prognosis. We have previously shown that Myc overexpression results in specific cancer cell liabilities, e.g. during cell cycle progression, that constitute therapeutic targets for synthetic lethality approaches. Small Ubiquitin-like Modifier (SUMO) proteins covalently bind to other proteins to modify their function. SUMOylation is involved in various cellular processes including transcription and cell cycle progression. Hierarchical cluster analysis comparing RNA expression data in murine normal control, pre-malignant and lymphoma Eµ-Myc B cells identified a Myc-induced SUMOylation-related gene expression signature. This signature was present in pre-malignant and Eµ-Myc lymphoma cells and involved the up-regulation of various critical components of the SUMOylation machinery, including the E1 ligases SAE1 and SAE2, the E2 ligase Ube2i and the E3 ligases Ranbp2 and PIAS2. Moreover this translated into elevated protein expression of the whole SUMOylation pathway and ubiquitous hyper-SUMOylation of proteins in Eµ-Myc lymphoma cells. For cross-species validation we analyzed human gene expression data and found that the Myc-induced regulation of SUMOylation-associated genes was also present in human IG/MYC Burkitt lymphomas, in contrast to Non-IG/MYC B-cell lymphomas. What is more analysis of ChIP-on-chip experiments revealed direct binding of Myc to regulatory genomic regions of almost all SUMOylation regulators (SUMO2, SUMO3 and E1, E2 and E3 ligases). The characteristic of cancer cells to depend on certain intact physiologic mechanisms is known as non-oncogene addiction. Since SUMOylation of proteins is involved in essential metabolic, survival and proliferation pathways we reasoned that intact SUMOylation is a non-oncogenic pathway that Myc-driven cells rely upon. We thus hypothesized that Myc-dependent cells could be specifically susceptible when interfering with SUMOylation by pharmacological means. We found that Eµ-Myc lymphoma cells were highly sensitive to the SUMOylation inhibitors ginkolic acid and anarcardic acid. In particular, inhibition of SUMOylation lead to cell cycle arrest, polyploidy, and subsequent cell death. This therapeutic effect was Myc-specific as shown by use of genetically defined cell lines and conditional Myc-overexpression systems. Specifically human Burkitt lymphoma cell lines were strikingly more sensitive to inhibition of SUMOylation than non-Myc-transformed lymphoma samples. Taken together, we provide correlative and experimental evidence that the Myc-associated expression of genes involved in SUMOylation is a hallmark of Burkitt’s lymphoma and constitutes a non oncogenic pathway which is therapeutically exploitable in lymphoma and other Myc-driven cancers. Disclosures: No relevant conflicts of interest to declare.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2046 ◽  
Author(s):  
Aneta Grabarska ◽  
Krystyna Skalicka-Woźniak ◽  
Michał Kiełbus ◽  
Magdalena Dmoszyńska-Graniczka ◽  
Paulina Miziak ◽  
...  

Naturally occurring coumarins are bioactive compounds widely used in Asian traditional medicine. They have been shown to inhibit proliferation, induce apoptosis, and/or enhance the cytotoxicity of currently used drugs against a variety of cancer cell types. The aim of our study was to examine the antiproliferative activity of different linear furanocoumarins on human rhabdomyosarcoma, lung, and larynx cancer cell lines, and dissolve their cellular mechanism of action. The coumarins were isolated from fruits of Angelica archangelica L. or Pastinaca sativa L., and separated using high-performance counter-current chromatography (HPCCC). The identity and purity of isolated compounds were confirmed by HPLC-DAD and NMR analyses. Cell viability and toxicity assessments were performed by means of methylthiazolyldiphenyl-tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays, respectively. Induction of apoptosis and cell cycle progression were measured using flow cytometry analysis. qPCR method was applied to detect changes in gene expression. Linear furanocoumarins in a dose-dependent manner inhibited proliferation of cancer cells with diverse activity regarding compounds and cancer cell type specificity. Imperatorin (IMP) exhibited the most potent growth inhibitory effects against human rhabdomyosarcoma and larynx cancer cell lines owing to inhibition of the cell cycle progression connected with specific changes in gene expression, including CDKN1A. As there are no specific chemotherapy treatments dedicated to laryngeal squamous cell carcinoma and rhabdomyosarcoma, and IMP seems to be non-toxic for normal cells, our results could open a new direction in the search for effective anti-cancer agents.


2019 ◽  
Vol 202 (2) ◽  
Author(s):  
Peter E. Burby ◽  
Lyle A. Simmons

ABSTRACT All organisms regulate cell cycle progression by coordinating cell division with DNA replication status. In eukaryotes, DNA damage or problems with replication fork progression induce the DNA damage response (DDR), causing cyclin-dependent kinases to remain active, preventing further cell cycle progression until replication and repair are complete. In bacteria, cell division is coordinated with chromosome segregation, preventing cell division ring formation over the nucleoid in a process termed nucleoid occlusion. In addition to nucleoid occlusion, bacteria induce the SOS response after replication forks encounter DNA damage or impediments that slow or block their progression. During SOS induction, Escherichia coli expresses a cytoplasmic protein, SulA, that inhibits cell division by directly binding FtsZ. After the SOS response is turned off, SulA is degraded by Lon protease, allowing for cell division to resume. Recently, it has become clear that SulA is restricted to bacteria closely related to E. coli and that most bacteria enforce the DNA damage checkpoint by expressing a small integral membrane protein. Resumption of cell division is then mediated by membrane-bound proteases that cleave the cell division inhibitor. Further, many bacterial cells have mechanisms to inhibit cell division that are regulated independently from the canonical LexA-mediated SOS response. In this review, we discuss several pathways used by bacteria to prevent cell division from occurring when genome instability is detected or before the chromosome has been fully replicated and segregated.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lionel Condé ◽  
Yulemi Gonzalez Quesada ◽  
Florence Bonnet-Magnaval ◽  
Rémy Beaujois ◽  
Luc DesGroseillers

AbstractBackgroundStaufen2 (STAU2) is an RNA binding protein involved in the posttranscriptional regulation of gene expression. In neurons, STAU2 is required to maintain the balance between differentiation and proliferation of neural stem cells through asymmetric cell division. However, the importance of controlling STAU2 expression for cell cycle progression is not clear in non-neuronal dividing cells. We recently showed that STAU2 transcription is inhibited in response to DNA-damage due to E2F1 displacement from theSTAU2gene promoter. We now study the regulation of STAU2 steady-state levels in unstressed cells and its consequence for cell proliferation.ResultsCRISPR/Cas9-mediated and RNAi-dependent STAU2 depletion in the non-transformed hTERT-RPE1 cells both facilitate cell proliferation suggesting that STAU2 expression influences pathway(s) linked to cell cycle controls. Such effects are not observed in the CRISPR STAU2-KO cancer HCT116 cells nor in the STAU2-RNAi-depleted HeLa cells. Interestingly, a physiological decrease in the steady-state level of STAU2 is controlled by caspases. This effect of peptidases is counterbalanced by the activity of the CHK1 pathway suggesting that STAU2 partial degradation/stabilization fines tune cell cycle progression in unstressed cells. A large-scale proteomic analysis using STAU2/biotinylase fusion protein identifies known STAU2 interactors involved in RNA translation, localization, splicing, or decay confirming the role of STAU2 in the posttranscriptional regulation of gene expression. In addition, several proteins found in the nucleolus, including proteins of the ribosome biogenesis pathway and of the DNA damage response, are found in close proximity to STAU2. Strikingly, many of these proteins are linked to the kinase CHK1 pathway, reinforcing the link between STAU2 functions and the CHK1 pathway. Indeed, inhibition of the CHK1 pathway for 4 h dissociates STAU2 from proteins involved in translation and RNA metabolism.ConclusionsThese results indicate that STAU2 is involved in pathway(s) that control(s) cell proliferation, likely via mechanisms of posttranscriptional regulation, ribonucleoprotein complex assembly, genome integrity and/or checkpoint controls. The mechanism by which STAU2 regulates cell growth likely involves caspases and the kinase CHK1 pathway.


Oncogene ◽  
2000 ◽  
Vol 19 (4) ◽  
pp. 514-525 ◽  
Author(s):  
Torsten E Reichert ◽  
Shigeki Nagashima ◽  
Yoshiro Kashii ◽  
Joanna Stanson ◽  
Gui Gao ◽  
...  

1997 ◽  
Vol 110 (19) ◽  
pp. 2345-2357 ◽  
Author(s):  
A. Battistoni ◽  
G. Guarguaglini ◽  
F. Degrassi ◽  
C. Pittoggi ◽  
A. Palena ◽  
...  

RanBP1 is a molecular partner of the Ran GTPase, which is implicated in the control of several processes, including DNA replication, mitotic entry and exit, cell cycle progression, nuclear structure, protein import and RNA export. While most genes encoding Ran-interacting partners are constitutively active, transcription of the RanBP1 mRNA is repressed in non proliferating cells, is activated at the G1/S transition in cycling cells and peaks during S phase. We report here that forced expression of the RanBP1 gene disrupts the orderly execution of the cell division cycle at several stages, causing inhibition of DNA replication, defective mitotic exit and failure of chromatin decondensation during the telophase-to-interphase transition in cells that achieve nuclear duplication and chromosome segregation. These results suggest that deregulated RanBP1 activity interferes with the Ran GTPase cycle and prevents the functioning of the Ran signalling system during the cell cycle.


2007 ◽  
Vol 4 (1) ◽  
pp. 83-94 ◽  
Author(s):  
Masaki Kawamura ◽  
Hirotake Kasai

We examined the effects of hemicellulase-treatedAgaricus blazei(AB fraction H, ABH) on growth of several tumor cell lines. ABH inhibited the proliferation of some cell lines without cytotoxic effects. It markedly prolonged the S phase of the cell cycle. ABH also induced mitochondria-mediated apoptosis in different cell lines. However, it had no impact on the growth of other cell lines. ABH induced strong activation of p38 mitogen-activated protein kinase (MAPK) in the cells in which it evoked apoptosis. On the other hand, ABH showed only a weak p38 activation effect in those cell lines in which it delayed cell cycle progression with little induction of apoptosis. However, p38 MAPK-specific inhibitor inhibited both ABH-induced effects, and ABH also caused apoptosis in the latter cells under conditions of high p38 MAPK activity induced by combined treatment with TNF-α. These results indicate that the responsiveness of p38 MAPK to ABH, which differs between cell lines, determines subsequent cellular responses on cell growth.


1987 ◽  
Vol 7 (10) ◽  
pp. 3846-3852 ◽  
Author(s):  
T Nakajima ◽  
M Masuda-Murata ◽  
E Hara ◽  
K Oda

Rat 3Y1 cell lines that express either adenovirus type 12 E1A 13S mRNA or 12S mRNA in response to dexamethasone treatment were established by introduction of recombinant vector DNA containing the E1A 13S- or 12S-mRNA cDNA placed downstream of the hormone-inducible promoter of mouse mammary tumor virus. These cell lines were growth arrested, and the induction of cell cycle progression was analyzed by flow cytometry after switch on of the cDNA by the addition of dexamethasone. The results indicate that the 13S- or 12S-mRNA product alone has the ability to cause progression of the cell cycle at a similar rate. The simultaneous addition of epidermal growth factor accelerated the rate of cell cycle progression in the transition from the G0/G1 phase to the S phase.


Sign in / Sign up

Export Citation Format

Share Document