scholarly journals Identification of Differentially Expressed Nucleolar TGF-β1 Target (DENTT) in Human Lung Cancer Cells That Is a New Member of the TSPY/SET/NAP-1 Superfamily

Genomics ◽  
2001 ◽  
Vol 73 (2) ◽  
pp. 179-193 ◽  
Author(s):  
Laurent L. Ozbun ◽  
Liang You ◽  
Sharon Kiang ◽  
Jerry Angdisen ◽  
Alfredo Martinez ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xin-Mei Lin ◽  
Shao-Bin Liu ◽  
Ying-Hua Luo ◽  
Wan-Ting Xu ◽  
Yu Zhang ◽  
...  

10-Hydroxy-2-decenoic acid (10-HDA), also known as royal jelly acid, has a variety of physiological functions, and recent studies have shown that it also has anticancer effects. However, its anticancer mechanisms have not been clearly defined. In this study, we investigated the underlying mechanisms of 10-HDA in A549 human lung cancer cells. We used Cell Counting Kit-8 assay, scratch wound healing assay, flow cytometry, and western blot analysis to investigate its apoptotic effects and underlying mechanism. Our results showed that 10-HDA inhibited the proliferation of three types of human lung cancer cells and had no significant toxic effects on normal cells. Accompanying reactive oxygen species (ROS), 10-HDA induced A549 cell apoptosis by regulating mitochondrial-associated apoptosis, and caused cell cycle arrest at the G0/G1 phase in a time-dependent manner. Meanwhile, 10-HDA also regulated mitogen-activated protein kinase (MAPK), signal transducer and activator of transcription 3 (STAT3), and nuclear factor kappa B (NF-κB) signaling pathways by increasing the expression levels of phosphorylated c-Jun N-terminal kinase, p-p38, and I-κB, and additionally, by decreasing the expression levels of phosphorylated extracellular signal-regulated kinase, p-STAT3, and NF-κB. These effects were blocked by MAPK inhibitors and N-acetyl-L-cysteine. Furthermore, 10-HDA inhibited cell migration by regulating transforming growth factor beta 1 (TGF-β1), SNAI1, GSK-3β, E-cadherin, N-cadherin, and vimentin. Taken together, the results of this study showed that 10-HDA induced cell cycle arrest and apoptosis in A549 human lung cancer cells through ROS-mediated MAPK, STAT3, NF-κB, and TGF-β1 signaling pathways. Therefore, 10-HDA may be a potential therapy for human lung cancer.


2017 ◽  
Vol 5 (1) ◽  
Author(s):  
Lingyan Wang ◽  
Jiayun Hou ◽  
Minghuan Zheng ◽  
Lin Shi

Actinidia Chinensis Planch roots (acRoots) are used to treat many cancers, although the anti-tumor mechanism by which acRoots inhibit cancer cell growth remains unclear. The present study aims at investigating inhibitory effects of acRoots on human lung cancer cells and potential mechanisms. Our data demonstrate that the inhibitory effects of acRoots on lung cancer cells depend on genetic backgrounds and phenotypes of cells. We furthermore found the expression of metabolism-associated gene profiles varied between acRoots-hypersensitive (H460) or hyposensitive lung cancer cells (H1299) after screening lung cancer cells with different genetic backgrounds. We selected retinoic acid receptor beta (RARB) as the core target within metabolism-associated core gene networks and evaluated RARB changes and roles in cells treated with acRoots at different concentrations and timeframes. Hypersensitive cancer cells with the deletion of RARB expression did not response to the treatment with acRoots, while RARB deletion did not change effects of acRoots on hyposensitive cells. Thus, it seems that RARB as the core target within metabolism-associated networks plays important roles in the regulation of lung cancer cell sensitivity to acRoots.


Analgesia ◽  
1995 ◽  
Vol 1 (4) ◽  
pp. 548-552
Author(s):  
Rhoda Maneckjee ◽  
Kathleen Dehen ◽  
John D. Minna

2020 ◽  
Vol 20 (5) ◽  
pp. 372-381
Author(s):  
Yoshiaki Sato ◽  
Hironori Yoshino ◽  
Eichi Tsuruga ◽  
Ikuo Kashiwakura

Background: Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) play key roles in the antiviral response, but recent works show that RLR activation elicits anticancer activity as well, including apoptosis. Previously, we demonstrated that the anticancer activity of the RLR agonist Poly(I:C)-HMW/LyoVec™ [Poly(I:C)-HMW] against human lung cancer cells was enhanced by cotreatment with ionizing radiation (IR). In addition, cotreatment with Poly(I:C)-HMW and IR induced apoptosis in a Fas-independent manner, and increased Fas expression on the cell surface. Objective: The current study investigated the resultant hypothesis that Fas ligand (FasL) may enhance apoptosis in lung cancer cells cotreated with Poly(I:C)-HMW+IR. Methods: FasL was added into culture medium at 24 h following cotreatment with Poly(I:C)- HMW+IR, after upregulation of cell surface Fas expression on human lung cancer cells A549 and H1299 have already been discussed. Results: FasL enhanced the apoptosis of A549 and H1299 cells treated with Poly(I:C)-HMW+IR. Similarly, IR alone - and not Poly(I:C)-HMW - resulted in the upregulation of cell surface Fas expression followed by a high response to FasL-induced apoptosis, thus suggesting that the high sensitivity of cells treated with Poly(I:C)-HMW+IR to FasL-induced apoptosis resulted from the cellular response to IR. Finally, knockdown of Fas by siRNA confirmed that the high response of treated cells to FasL-induced apoptosis is dependent on Fas expression. Conclusion: In summary, the present study indicates that upregulated Fas expression following cotreatment with Poly(I:C)-HMW and IR is responsive to FasL-induced apoptosis, and a combination of RLR agonist, IR, and FasL could be a potential promising cancer therapy.


2020 ◽  
Vol 48 (01) ◽  
pp. 201-222
Author(s):  
Hsu-Kai Huang ◽  
Shin-Yi Lee ◽  
Shu-Fen Huang ◽  
Yu-San Lin ◽  
Shih-Chi Chao ◽  
...  

Aggressive tumor cells mainly rely on glycolysis, and further release vast amounts of lactate and protons by monocarboxylate transporter (MCT), which causes a higher intracellular pH (pHi) and acidic extracellular pH. Isoorientin, a principle flavonoid compound extracted from several plant species, shows various pharmacological activities. However, effects of isoorientin on anticancer and MCT await to explore in human lung cancer cells. Human lung cancer tissues were obtained from cancer patients undergoing surgery, while the human lung adenocarcinoma cells (A549) were bought commercially. Change of pHi was detected by microspectrofluorometry method with a pH-sensitive fluorescent dye, BCECF. MTT and wound-healing assay were used to detect the cell viability and migration, respectively. Western blot techniques and immunocytochemistry staining were used to detect the protein expression. Our results indicated that the expression of MCTs1/4 and CD147 were upregulated significantly in human lung tissues. In experiments of A549 cells, under HEPES-buffer, the resting pHi was 7.47, and isoorientin (1–300[Formula: see text][Formula: see text]M) inhibited functional activity of MCT concentration-dependently (up to [Formula: see text]%). Pretreatment with isoorientin (3–100[Formula: see text][Formula: see text]M) for 24[Formula: see text]h, MCT activity and cell migration were significantly inhibited ([Formula: see text]% and [Formula: see text]%, respectively), while the cell viability was not affected. Moreover, the expression of MCTs1/4, CD147, and matrix metalloproteinase (MMP) 2/9 were significantly down regulated. In summary, MCTs1/4 and CD147 are significantly upregulated in human lung adenocarcinoma tissues, and isoorientin inhibits cells-migration by inhibiting activity/expression of MCTs1/4 and MMPs2/9 in human lung cancer cells. These novel findings suggest that isoorientin could be a promising pharmacological agent for lung cancer.


2007 ◽  
Vol 120 (10) ◽  
pp. 905-909 ◽  
Author(s):  
Hong-li LI ◽  
Tong-shan WANG ◽  
Xiao-yu LI ◽  
Nan LI ◽  
Ding-zhi HUANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document