The evolution of body mass and relative brain size in fossil hominids

1996 ◽  
Vol 30 (3) ◽  
pp. 243-276 ◽  
Author(s):  
John Kappelman
2020 ◽  
Author(s):  
McKenna Becker

AbstractPredator-prey dynamics provide critical insight into overall coral reef health. It has been shown that predator-prey relationships link the relative brain size of predators to their prey. Predation pressure forces prey to use decision-making skills that require higher cognition by inspecting and identifying predators and then adjusting their behavior to achieve the highest chance for survival. However, the predation pressure that prey face outweighs the pressure predators face to find prey, resulting in prey having larger relative brain sizes than their predators. There is little data on the relative brain size of fishes with few natural predators such as Pterois volitans. This study compared the brain mass to body mass ratio of Pterois volitans, which have very few natural predators and thus very little predation pressure, to the brain mass to body mass ratio of their prey, possible predators, competitors, and taxonomically similar fish. Lionfish had a significantly smaller relative brain size than their predators, prey, and competitors, but was not significantly smaller than taxonomically similar fish. These results demonstrate that the morphological anti-predator adaptation of venomous spines causes little predation pressure. Thus, lionfish do not use the same cognitive skills as other prey or predators and, in turn, have smaller relative brain sizes.


2011 ◽  
Vol 62 (6) ◽  
pp. 567 ◽  
Author(s):  
Christopher G. Mull ◽  
Kara E. Yopak ◽  
Nicholas K. Dulvy

Chondrichthyans have the most diverse array of reproductive strategies of any vertebrate group, ranging from egg-laying to live-bearing with placental matrotrophy. Matrotrophy is defined as additional maternal provisioning beyond the yolk to the developing neonate; in chondrichthyans, this occurs through a range of mechanisms including uterine milk, oophagy, uterine cannibalism and placentotrophy. Chondrichthyans also exhibit a wide range of relative brain sizes and highly diverse patterns of brain organisation. Brains are energetically expensive to produce and maintain, and represent a major energetic constraint during early life in vertebrates. In mammals, more direct maternal–fetal placental connections have been associated with larger brains (steeper brain–body allometric scaling relationships). We test for a relationship between reproductive mode and relative brain size across 85 species from six major orders of chondrichthyans by using several phylogenetic comparative analyses. Ordinary least-squares (OLS) and reduced major axis (RMA) regression of body mass versus brain mass suggest that increased maternal investment results in a larger relative brain size. Our findings were supported by phylogenetic generalised least-squares models (pGLS), which also highlighted that these results vary with evolutionary tempo, as described by different branch-length assumptions. Across all analyses, maximum body size had a significant influence on the relative brain size, with large-bodied species (body mass >100 kg) having relatively smaller brains. The present study suggests that there may be a link between reproductive investment and relative brain size in chondrichthyans; however, a more definitive test requires a better-resolved phylogeny and a more nuanced categorisation of the level of maternal investment in chondrichthyans.


2016 ◽  
Vol 283 (1827) ◽  
pp. 20152725 ◽  
Author(s):  
Jan Matějů ◽  
Lukáš Kratochvíl ◽  
Zuzana Pavelková ◽  
Věra Pavelková Řičánková ◽  
Vladimír Vohralík ◽  
...  

The social brain hypothesis (SBH) contends that cognitive demands associated with living in cohesive social groups favour the evolution of large brains. Although the correlation between relative brain size and sociality reported in various groups of birds and mammals provides broad empirical support for this hypothesis, it has never been tested in rodents, the largest mammalian order. Here, we test the predictions of the SBH in the ground squirrels from the tribe Marmotini. These rodents exhibit levels of sociality ranging from solitary and single-family female kin groups to egalitarian polygynous harems but feature similar ecologies and life-history traits. We found little support for the association between increase in sociality and increase in relative brain size. Thus, sociality does not drive the evolution of encephalization in this group of rodents, a finding inconsistent with the SBH. However, body mass and absolute brain size increase with sociality. These findings suggest that increased social complexity in the ground squirrels goes hand in hand with larger body mass and brain size, which are tightly coupled to each other.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257803
Author(s):  
David A. Waugh ◽  
J. G. M. Thewissen

Most authors have identified two rapid increases in relative brain size (encephalization quotient, EQ) in cetacean evolution: first at the origin of the modern suborders (odontocetes and mysticetes) around the Eocene-Oligocene transition, and a second at the origin of the delphinoid odontocetes during the middle Miocene. We explore how methods used to estimate brain and body mass alter this perceived timing and rate of cetacean EQ evolution. We provide new data on modern mammals (mysticetes, odontocetes, and terrestrial artiodactyls) and show that brain mass and endocranial volume scale allometrically, and that endocranial volume is not a direct proxy for brain mass. We demonstrate that inconsistencies in the methods used to estimate body size across the Eocene-Oligocene boundary have caused a spurious pattern in earlier relative brain size studies. Instead, we employ a single method, using occipital condyle width as a skeletal proxy for body mass using a new dataset of extant cetaceans, to clarify this pattern. We suggest that cetacean relative brain size is most accurately portrayed using EQs based on the scaling coefficients as observed in the closely related terrestrial artiodactyls. Finally, we include additional data for an Eocene whale, raising the sample size of Eocene archaeocetes to seven. Our analysis of fossil cetacean EQ is different from previous works which had shown that a sudden increase in EQ coincided with the origin of odontocetes at the Eocene-Oligocene boundary. Instead, our data show that brain size increased at the origin of basilosaurids, 5 million years before the Eocene-Oligocene transition, and we do not observe a significant increase in relative brain size at the origin of odontocetes.


Paleobiology ◽  
1977 ◽  
Vol 3 (4) ◽  
pp. 333-349 ◽  
Author(s):  
Leonard Radinsky

It is commonly believed that the brains of the ancestors of modern carnivores (miacids) were superior to (e.g., larger than) those of other early carnivores (creodonts and mesonychids). Examination of the fossil record of brains of early carnivores reveals no evidence to support that belief. Moreover, evolutionary trends towards increasing relative brain size and an expansion of neocortex are seen in both miacids and creodonts. The neocortex expanded in a different way in miacids than in creodonts and mesonychids (evidenced by different sulcal patterns), but the biological significance of the observed differences is unknown.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bruno Simmen ◽  
Luca Morino ◽  
Stéphane Blanc ◽  
Cécile Garcia

AbstractLife history, brain size and energy expenditure scale with body mass in mammals but there is little conclusive evidence for a correlated evolution between life history and energy expenditure (either basal/resting or daily) independent of body mass. We addressed this question by examining the relationship between primate free-living daily energy expenditure (DEE) measured by doubly labeled water method (n = 18 species), life history variables (maximum lifespan, gestation and lactation duration, interbirth interval, litter mass, age at first reproduction), resting metabolic rate (RMR) and brain size. We also analyzed whether the hypometabolic primates of Madagascar (lemurs) make distinct energy allocation tradeoffs compared to other primates (monkeys and apes) with different life history traits and ecological constraints. None of the life-history traits correlated with DEE after controlling for body mass and phylogeny. In contrast, a regression model showed that DEE increased with increasing RMR and decreasing reproductive output (i.e., litter mass/interbirth interval) independent of body mass. Despite their low RMR and smaller brains, lemurs had an average DEE remarkably similar to that of haplorhines. The data suggest that lemurs have evolved energy strategies that maximize energy investment to survive in the unusually harsh and unpredictable environments of Madagascar at the expense of reproduction.


Evolution ◽  
1978 ◽  
Vol 32 (4) ◽  
pp. 740-751 ◽  
Author(s):  
John F. Eisenberg ◽  
Don E. Wilson

Sign in / Sign up

Export Citation Format

Share Document