Conjugative Transfer and in Vitro/in Vivo Stability of the Broad-Host-Range IncP R751 Plasmid in Brucella spp.

Plasmid ◽  
1993 ◽  
Vol 29 (2) ◽  
pp. 142-146 ◽  
Author(s):  
J.M. Verger ◽  
M. Grayon ◽  
E. Chaslus-Dancla ◽  
M. Meurisse ◽  
J.P. Lafont
1999 ◽  
Vol 181 (9) ◽  
pp. 2807-2815 ◽  
Author(s):  
Grazyna Jagura-Burdzy ◽  
Kalliope Kostelidou ◽  
Jessica Pole ◽  
Dheeraj Khare ◽  
Anthony Jones ◽  
...  

ABSTRACT The korAB operon of broad-host-range plasmid RK2 encodes five genes, two of which, incC andkorB, belong to the parA and parBfamilies, respectively, of genome partitioning functions. BothkorB and a third gene, korA, are responsible for coordinate regulation of operons encoding replication, transfer, and stable inheritance functions. Overexpression of incCalone caused rapid displacement of RK2. Using two different reporter systems, we show that incC modulates the action of KorB. Using promoter fusions to the reporter gene xylE, we show that incC potentiates the repression of transcription bykorB. This modulation of korB activity was only observed with incC1, which encodes the full-length IncC (364 amino acids [aa]), whereas no effect was observed withincC2, which encodes a polypeptide of 259 aa that lacks the N-terminal 105 aa. Using bacterial extracts with IncC1 and IncC2 or IncC1 purified through the use of a His6 tail and Ni-agarose chromatography, we showed that IncC1 potentiates the binding of KorB to DNA at representative KorB operators. The ability of IncC to stabilize KorB-DNA complexes suggests that these two proteins work together in the global regulation of many operons on the IncP-1 genomes, as well in plasmid partitioning.


Plasmid ◽  
1995 ◽  
Vol 33 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Philip H. Elzer ◽  
Michael E. Kovach ◽  
Robert W. Phillips ◽  
Gregory T. Robertson ◽  
Kenneth M. Peterson ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Chenglin Tao ◽  
Zhengfei Yi ◽  
Yaodong Zhang ◽  
Yao Wang ◽  
Hong Zhu ◽  
...  

Inappropriate use of antibiotics has accelerated to the emergence of multidrug-resistant bacteria, becoming a major health threat. Moreover, bacterial biofilms contribute to antibiotic resistance and prolonged infections. Bacteriophage (phage) therapy may provide an alternative strategy for controlling multidrug-resistant bacterial infections. In this study, a broad-host-range phage, SHWT1, with lytic activity against multidrug-resistant Salmonella was isolated, characterized and evaluated for the therapeutic efficacy in vitro and in vivo. Phage SHWT1 exhibited specific lytic activity against the prevalent Salmonella serovars, such as Salmonella Pullorum, Salmonella Gallinarum, Salmonella Enteritidis, and Salmonella Typhimurium. Morphological analysis showed that phage SHWT1 was a member of the family Siphoviridae and the order Caudovirales. Phage SHWT1 had a latent period of 5 min and burst size of ~150 plaque-forming units (PFUs)/cell. The phage was stable from pH 3-12 and 4–65°C. Phage SHWT1 also showed capacity to lyse Salmonella planktonic cells and inhibit the biofilm formation at optimal multiplicity of infection (MOI) of 0.001, 0.01, 0.1, and 100, respectively. In addition, phage SHWT1 was able to lyse intracellular Salmonella within macrophages. Genome sequencing and phylogenetic analyses revealed that SHWT1 was a lytic phage without toxin genes, virulence genes, antibiotic resistance genes, or significant genomic rearrangements. We found that phage SHWT1 could successfully protect mice against S. enteritidis and S. typhimurium infection. Elucidation of the characteristics and genome sequence of phage SHWT1 demonstrates that this phage is a potential therapeutic agent against the salmonellosis caused by multidrug-resistant Salmonella.


2002 ◽  
Vol 383 (11) ◽  
Author(s):  
A.G. Camacho ◽  
R. Misselwitz ◽  
J. Behlke ◽  
S. Ayora ◽  
K. Welfle ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
M. Adamczyk ◽  
E. Lewicka ◽  
R. Szatkowska ◽  
H. Nieznanska ◽  
J. Ludwiczak ◽  
...  

Abstract Background DNA binding KfrA-type proteins of broad-host-range bacterial plasmids belonging to IncP-1 and IncU incompatibility groups are characterized by globular N-terminal head domains and long alpha-helical coiled-coil tails. They have been shown to act as transcriptional auto-regulators. Results This study was focused on two members of the growing family of KfrA-type proteins encoded by the broad-host-range plasmids, R751 of IncP-1β and RA3 of IncU groups. Comparative in vitro and in silico studies on KfrAR751 and KfrARA3 confirmed their similar biophysical properties despite low conservation of the amino acid sequences. They form a wide range of oligomeric forms in vitro and, in the presence of their cognate DNA binding sites, they polymerize into the higher order filaments visualized as “threads” by negative staining electron microscopy. The studies revealed also temperature-dependent changes in the coiled-coil segment of KfrA proteins that is involved in the stabilization of dimers required for DNA interactions. Conclusion KfrAR751 and KfrARA3 are structural homologues. We postulate that KfrA type proteins have moonlighting activity. They not only act as transcriptional auto-regulators but form cytoskeletal structures, which might facilitate plasmid DNA delivery and positioning in the cells before cell division, involving thermal energy.


2001 ◽  
Vol 75 (21) ◽  
pp. 10054-10064 ◽  
Author(s):  
Jerg Schmidt ◽  
Volker Gerdts ◽  
Jörg Beyer ◽  
Barbara G. Klupp ◽  
Thomas C. Mettenleiter

ABSTRACT Infection of cells by herpesviruses is initiated by the interaction of viral envelope glycoproteins with cellular receptors. In the alphaherpesvirus pseudorabies virus (PrV), the causative agent of Aujeszky's disease in pigs, the essential glycoprotein D (gD) mediates secondary attachment of virions to target cells by binding to newly identified cellular receptors (R. J. Geraghty, C. Krummenacher, G. H. Cohen, R. J. Eisenberg, and P. G. Spear, Science 280:1618–1620, 1998). However, in the presence of compensatory mutations, infection can also occur in the absence of gD, as evidenced by the isolation in cell culture of an infectious gD-negative PrV mutant (PrV-gD− Pass) (J. Schmidt, B. G. Klupp, A. Karger, and T. C. Mettenleiter, J. Virol. 71:17–24, 1997). PrV-gD− Pass is replication competent with an only moderate reduction in specific infectivity but appears to bind to receptors different from those recognized by wild-type PrV (A. Karger, J. Schmidt, and T. C. Mettenleiter, J. Virol. 72:7341–7348, 1998). To analyze whether this alteration in receptor usage in vitro influences infection in vivo, the model host mouse and the natural host pig were intranasally infected with PrV-gD− Pass and were compared to animals infected by wild-type PrV. For mice, a comparable progress of disease was observed, and all animals infected with mutant virus died, although they exhibited a slight delay in the onset of symptoms and, correspondingly, a longer time to death. In contrast, whereas wild-type PrV-infected pigs showed clinical signs and histological and histopathological findings typical of PrV infection, no signs of disease were observed after infection with PrV-gD− Pass. Moreover, in these animals, virus-infected cells were not detectable by immunohistochemical staining of different organ samples and no virus could be isolated from nasal swabs. Mutations in glycoproteins B and H were found to correlate with, and probably contribute to, gD-independent infectivity. In conclusion, although PrV-gD− Pass is virulent in mice, it is apparently unable to infect the natural host, the pig. This altered host range in vivo correlates with a difference of receptor usage in vitro and demonstrates for the first time the importance of gD receptors in alphaherpesvirus infection of an animal host.


2019 ◽  
Author(s):  
Fabienne Benz ◽  
Jana S. Huisman ◽  
Erik Bakkeren ◽  
Joana A. Herter ◽  
Tanja Stadler ◽  
...  

AbstractHorizontal gene transfer, mediated by conjugative plasmids, is a major driver of the global spread of antibiotic resistance. However, the relative contributions of factors that underlie the spread of clinically relevant plasmids are unclear. Here, we quantified conjugative transfer dynamics of Extended Spectrum Beta-Lactamase (ESBL) producing plasmids in the absence of antibiotics. We showed that clinical Escherichia coli strains natively associated with ESBL-plasmids conjugate efficiently with three distinct E. coli strains and one Salmonella enterica serovar Typhimurium strain, reaching final transconjugant frequencies of up to 1% within 24 hours in vitro. The variation of final transconjugant frequencies varied among plasmids, donors and recipients and was better explained by variation in conjugative transfer efficiency than by variable clonal expansion. We identified plasmid-specific genetic factors, specifically the presence/absence of transfer genes, that influenced final transconjugant frequencies. Finally, we investigated plasmid spread within the mouse intestine, demonstrating qualitative agreement between plasmid spread in vitro and in vivo. This suggests a potential for the prediction of plasmid spread in the gut of animals and humans, based on in vitro testing. Altogether, this may allow the identification of resistance plasmids with high spreading potential and help to devise appropriate measures to restrict their spread.


Sign in / Sign up

Export Citation Format

Share Document