Unstable Climate Oscillations during the Late Holocene in the Eastern Bransfield Basin, Antarctic Peninsula

2002 ◽  
Vol 58 (3) ◽  
pp. 234-245 ◽  
Author(s):  
Boo-Keun Khim ◽  
Ho Il Yoon ◽  
Cheon Yun Kang ◽  
Jang Jun Bahk

AbstractCore A9-EB2 from the eastern Bransfield Basin, Antarctic Peninsula, consists of pelagic (diatom ooze-clay couplets and bioturbated diatom ooze) and hemipelagic (bioturbated mud) sediments interbedded with turbidites (homogeneous mud and silt–clay couplets). The cyclic and laminated nature of these pelagic sediments represents alternation between the deposition of diatom-rich biogenic sediments and of terrigenous sediments. Sediment properties and geochemical data explain the contrasting lamination, with light layers being finer-grained and relatively rich in total organic carbon and biogenic silica content. Also, the high-resolution magnetic susceptibility (MS) variations highlight distinct features: high MS values coincide with clastic-rich sections and low MS values correspond to biogenic sections. The chronology developed for core A9-EB2 accounts for anomalous ages associated with turbidites and shows a linear sedimentation rate of approximately 87 cm/103 yr, which is supported by an accumulation rate of 80 cm/103 yr calculated from 210Pb activity. The late Holocene records clearly identify Neoglacial events of the Little Ice Age (LIA) and Medieval Warm Period (MWP). Other unexplained climatic events comparable in duration and amplitude to the LIA and MWP events also appear in the MS record, suggesting intrinsically unstable climatic conditions during the late Holocene in the Bransfield Basin of Antarctic Peninsula.

The Holocene ◽  
2021 ◽  
pp. 095968362110665
Author(s):  
Helen Hallang ◽  
Cynthia A Froyd ◽  
John F Hiemstra ◽  
Sietse O Los

An environmental reconstruction based on palynological evidence preserved in peat was carried out to examine late-Holocene alpine tree line dynamics in the context of past climatic changes on Galdhøpiggen (Jotunheimen, southern Norway). We analysed a peat core taken from a mire at the present-day tree line (1000 m a.s.l.), c. 450 m downslope from the lower limit of sporadic permafrost. We adopted a combination of commonly used indicators of species’ local presence to reconstruct past vegetation assemblages, such as the relative pollen abundance (%), pollen accumulation rate (PAR), and presence of indicator species. Additionally, fossil pollen from the peat sequence was compared to modern pollen from a surface moss polster to establish a modern analogue. The results were compared with studies covering the late-Holocene climatic changes in the area. The reconstruction demonstrates that a pine-dominated woodland reached above the present-day tree line at c. 4300 cal. yr BP, suggesting a warmer climate suitable for Scots pine ( Pinus sylvestris) growth at this altitude. Scots pine retreated to lower altitudes between c. 3400 and 1700 cal. yr BP, accompanied by the descent of the low-alpine shrub-dominated belt, in response to cooling climatic conditions. The colder period covered c. 1700–170 cal. yr BP, and an open downy birch ( Betula pubescens) woodland became widespread at 1000 m a.s.l., whilst pine remained sparse at this altitude. From c. 170 cal. yr BP onwards, warming allowed pine to re-establish its local presence alongside downy birch at 1000 m a.s.l.


2019 ◽  
Author(s):  
Catarina Cavaleiro ◽  
Antje H. L. Voelker ◽  
Heather Stoll ◽  
Karl-Heinz Baumann ◽  
Michal Kucera

Abstract. Coccolithophores contribute significantly to the marine primary productivity and play a unique role in ocean biogeochemistry by using carbon for photosynthesis (biological pump) and also for calcification (carbonate pump). Despite the importance of including coccolithophores in global climate models to allow better predictions of the climate system's responses to planetary change, highly uncertain coccolithophore paleoproductivity past reconstructions mostly relied on proxies dependent on accumulation and sedimentation rates, and preservation conditions. In this study we used an independent proxy, based on the coccolith fraction (CF) Sr/Ca ratio, to reconstruct coccolithophore productivity. We used the marine sediment core MD03-2699 from the western Iberian margin (IbM), spanning the glacial/interglacial cycles of Marine Isotope Stage (MIS) 12 to MIS 9. We found that IbM coccolithophore productivity was controlled by changes in the oceanographic conditions, such as in SST, the competition for nutrients with other phytoplankton groups and insolation. Long-term coccolithophore productivity was primarily affected by variations in the dominant water mass. Polar and subpolar surface waters during glacial substages were associated with decreased coccolithophore productivity, with strongest productivity minima being concomitant with Heinrich-type events (HtE). Subtropical, nutrient-poorer waters during interglacial substages, i.e. MIS 11c, might have lead to intensified competition for nutrients with diatoms resulting in intermediate levels of coccolithophore productivity. The transition from interglacial to glacial substages was likely associated with increasing presence of nutrient-richer waters, possibly with lower silica content than riverine discharges and mostly fed by either upwelling or surface waters of northern origin. This minimized the competition with diatoms and coccolithophores reached their productivity maxima. Climatic conditions during colder periods forced coccolithophores to change their phenology contributing to the dissonance between the CF Sr/Ca derived coccolithophore productivity and nannofossil accumulation rate and total alkenone flux, which is interpreted as a consequence of the narrowing yearly time-window for coccolithophore productivity.


2021 ◽  
Vol 5 (3) ◽  
pp. 287-304
Author(s):  
N.G. Razjigaeva ◽  
◽  
L.A. Ganzey ◽  
T.A. Grebennikova ◽  
T.A. Kopoteva ◽  
...  

The stages of development of small Solontsovskie (Shanduyskie) Lakes located in the middle mountains of the Central Sikhote-Alin within large landslides, formed on the slopes of the paleovolcano, are identified on the basis of complex study of the sediment section of the Nizhnee Lake. The ecological-taxonomic composition of the diatom flora, the botanical composition of peat have been analyzed, and the tendencies of lacustrine sedimentation depending on the different scale of hydroclimatic changes in the Late Holocene have been established. The age model is based on 6 radiocarbon dates. The temporary resolution for the reconstructions is 30–60 years. A comparison of the development of Nizhnee and Izyubrinye Solontsi Lakes was carried out, the stages of watering and shallowing of lakes were identified on the basis of their dynamics, which made it possible to restore the change in moisture in the middle mountains. Organogenic deposits in lacustrine basins accumulated at high rates (up to 1.7–1.9 mm/ year). The most detailed data were obtained for the last 2.6 thousand cal. yr BP based on the study of the sediment section of the Nizhnee Lake, which responded more sensitively to changing climatic conditions. Frequent changes in diatom assemblages and peat-forming plants indicate unstable hydroclimatic conditions with varying degrees of watering and drainage up to complete overgrowth of water bodies. According to the data of diatom analysis, a successive change in the trophicity of the lake was traced. A frequent change of sphagnum mosses of different sections with different trophic preferences was established. The main reason for the change in the hydrological regime of the lakes was variations in precipitation during the short-term climatic changes. The correlation of the identified paleoclimatic events with global data has been carried out. Cooling periods, as a rule, were accompanied by a decrease in moisture, but the Little Ice Age was wet due to an increase in precipitation.


1995 ◽  
Vol 7 (2) ◽  
pp. 159-170 ◽  
Author(s):  
Eugene W. Domack ◽  
Scott E. Ishman ◽  
Andrew B. Stein ◽  
Charles E. McClennen ◽  
A.J. Timothy Jull

Marine sediment cores were obtained from in front of the Müller Ice Shelf in Lallemand Fjord, Antarctic Peninsula in the austral summer of 1990–91. Sedimentological and geochemical data from these cores document a warm period that preceded the advance of the Müller Ice Shelf into Lallemand Fjord. The advance of the ice shelf is inferred from a reduction in the total organic carbon content and an increase in well-sorted, aeolian, sand in cores proximal to the present calving line. This sedimentological change is paralleled by a change in the foraminiferal assemblages within the cores. Advance of the ice shelf is indicated by a shift from assemblages dominated by calcareous benthic and planktonic forms to those dominated by agglutinated forms. A 14C chronology for the cores indicates that the advance of the Müller Ice Shelf took place c. 400 years ago, coincident with glacier advances in other high southern latitude sites during the onset of the Little Ice Age. Ice core evidence, however, documents this period as one of warmer temperatures for the Antarctic Peninsula. We suggest that the ice shelf advance was linked to the exclusion of circumpolar deep water from the fjord. This contributed to increased mass balance of the ice shelf system by preventing the rapid undermelt that is today associated with warm circumpolar deep water within the fjord. We also document the recent retreat of the calving line of the Müller Ice Shelf that is apparently in response to a recent (four decade long) warming trend along the western side of the Antarctic Peninsula.


2015 ◽  
Vol 40 (3) ◽  
pp. 369-391 ◽  
Author(s):  
Frank Lehmkuhl

In the continental areas of Central and High Asia, periglacial landform assemblages, sediment structures and processes are mainly influenced and determined by of soil humidity during freeze–thaw cycles. These cryogenic processes result in periglacial landforms such as solifluction, earth hummocks or patterned ground. The distribution of rock glaciers as clear indicators of permafrost is additionally determined by rock fall or moraine debris composed of large boulders (e.g. of granite). Periglacial features were used to reconstruct past climatic conditions, e.g. relict involutions and ice-wedge casts provide evidence for the distribution of former permafrost, say, for the Last Glacial Maximum (LGM). Past temperatures, e.g. mean annual air temperatures, can be estimated from these periglacial features and can be compared with other proxy data, such as glacier fluctuations. Examples from late Holocene solifluction activity in the Altai, Khangai and north-eastern Tibetan Plateau show a different intensity of solifluction processes during the late Holocene and Little Ice Age due to a decrease in temperature and higher soil humidity. The distribution of past permafrost in some regions is still a matter of debate because of different interpretations of sediment structures: sometimes features described as ice-wedge casts may be caused by roots or desiccation cracks due to drying of clay rich sediments. Seismically deformed unconsolidated deposits (seismites) can also be misinterpreted as periglacial involutions. The lack of certain landform assemblages and sediment structures does not necessarily mean that the area had no permafrost. Moisture conditions can also determine the periglacial landform generation to a large degree. They can be ordered in Central Asia as follows (from highest moisture availability to lowest): solifluction; rock glacier; permafrost involutions; ice-wedge casts; sand-wedge casts.


2001 ◽  
Vol 13 (2) ◽  
pp. 167-173 ◽  
Author(s):  
Boo-Keun Khim ◽  
Ho Il Yoon ◽  
Yeadong Kim ◽  
Im Chul Shin

Two short gravity cores were retrieved to obtain palaeoclimatic information from Maxwell and Admiralty bays, King George Island, South Shetland Islands. AMS 14C age dates, sediment properties (grain size, TOC and CaCO3) and stable oxygen and carbon isotope compositions of benthiδ foraminifera (Globocassidulina biora) show downcore variations that characterize depositional conditions during the late Holocene. In particular, δ18O values of benthic foraminifera are lowest at approximately 2500 yr bp in both cores. Allowδ18O time-equivalent excursion in both cores is interpreted to reflect a distinct subglacial meltwater discharge intensified by warm climatic conditions. An increased proportion of fine-grained detritus and higher TOC in the cores at this level suggests that enhanced meltwater supply may have resulted in increased primary productivity. This meltwater discharge event provides evidence of climatic instability during the late Holocene at King George Island.


2010 ◽  
Vol 2 (2) ◽  
Author(s):  
Alessandro Incarbona ◽  
Giuseppe Zarcone ◽  
Mauro Agate ◽  
Sergio Bonomo ◽  
Enrico Stefano ◽  
...  

AbstractWe present a thorough review of the knowledge on the climate and environment in Sicily over the last 20 000 years, taking into account results of several studies carried using terrestrial and marine records. We obtain a coherent framework of the most important changes succeeded in the island, even if some points need further investigation.All the reconstructions of surface temperatures of the seas and the air surrounding Sicily point out severe climatic conditions during the last glacial period. The steppe- and semisteppe-like vegetation pattern testifies, together with additional evidence from geochemical data of lacustrine evidence, markedly arid conditions. Fi-nally, significant episodes of sea level drop connected Sicily to the Italian Peninsula and favoured the dispersion of faunal elements from southern Italy.The transition between the last glacial and the Holocene was not characterized by a gradual warming but was punctuated by two abrupt suborbital climatic fluctuations: Bølling-Allerød (warm) and Younger Dryas (cold), as recognized in the sediments recovered close to the northern and southern coast of Sicily. A denser arboreal cover is possibly indicated by the occurrence of dormouse and Arvicola remains.Finally the sensitivity of Sicily to climate perturbations is demonstrated by the occurrence of repeated subtle climatic anomalies during the Holocene, including the Little Ice Age, also known from historical chronicles. Forests, woods and Mediterranean maquis developed in the early-middle Holocene. Thereafter was a general decline of arboreal vegetation, following a general aridification trend that seems to be a common feature in southern Europe and North Africa. Science Greek colonization (7th century before Christ), the landscape was intensively modelled for agriculture and breeding, leading to a significant loss of vegetation cover.


2004 ◽  
Vol 39 ◽  
pp. 557-562 ◽  
Author(s):  
Pedro Skvarca ◽  
Hernán De Angelis ◽  
Andrés F. Zakrajsek

AbstractFollowing the collapse of Larsen A in 1995, about 3200 km2 of Larsen B ice shelf disintegrated in early 2002 during the warmest summer recorded on the northeastern Antarctic Peninsula. Immediately prior to disintegration the last field campaign was carried out on Larsen B. Measurements included surface net mass balance, velocity and strain rate on a longitudinal transect along Crane Glacier flowline and over a remnant section confined within Seal Nunataks that survived the collapse. In addition, an automatic weather station located nearby allowed derivation of melt days relevant to the formation and extent of surface meltwater. Repeated surveys allowed us to detect a significant acceleration in ice-flow velocity and associated increasing strain rates along the longitudinal transect. It may be possible to use this acceleration as a predictor of imminent ice-shelf collapse, applicable to ice shelves subject to similar climatic conditions. Additional information on recent ongoing changes was provided by a visible satellite image acquired in early 2003.


2018 ◽  
Vol 11 (9) ◽  
pp. 3587-3603 ◽  
Author(s):  
Didier M. Roche ◽  
Claire Waelbroeck ◽  
Brett Metcalfe ◽  
Thibaut Caley

Abstract. The oxygen-18 to oxygen-16 ratio recorded in fossil planktonic foraminifer shells has been used for over 50 years in many geoscience applications. However, different planktonic foraminifer species generally yield distinct signals, as a consequence of their specific living habitats in the water column and along the year. This complexity is usually not taken into account in model–data integration studies. To overcome this shortcoming, we developed the Foraminifers As Modeled Entities (FAME) module. The module predicts the presence or absence of commonly used planktonic foraminifers and their oxygen-18 values. It is only forced by hydrographic data and uses a very limited number of parameters, almost all derived from culture experiments. FAME performance is evaluated using the Multiproxy Approach for the Reconstruction of the Glacial Ocean surface (MARGO) Late Holocene planktonic foraminifer calcite oxygen-18 and abundance datasets. The application of FAME to a simple cooling scenario demonstrates its utility to predict changes in planktonic foraminifer oxygen-18 to oxygen-16 ratio in response to changing climatic conditions.


Sign in / Sign up

Export Citation Format

Share Document