Posttranscriptional Regulation of Gene Expression in Hepadnaviruses

1998 ◽  
Vol 8 (4) ◽  
pp. 319-326 ◽  
Author(s):  
T.S. Benedict Yen
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lionel Condé ◽  
Yulemi Gonzalez Quesada ◽  
Florence Bonnet-Magnaval ◽  
Rémy Beaujois ◽  
Luc DesGroseillers

AbstractBackgroundStaufen2 (STAU2) is an RNA binding protein involved in the posttranscriptional regulation of gene expression. In neurons, STAU2 is required to maintain the balance between differentiation and proliferation of neural stem cells through asymmetric cell division. However, the importance of controlling STAU2 expression for cell cycle progression is not clear in non-neuronal dividing cells. We recently showed that STAU2 transcription is inhibited in response to DNA-damage due to E2F1 displacement from theSTAU2gene promoter. We now study the regulation of STAU2 steady-state levels in unstressed cells and its consequence for cell proliferation.ResultsCRISPR/Cas9-mediated and RNAi-dependent STAU2 depletion in the non-transformed hTERT-RPE1 cells both facilitate cell proliferation suggesting that STAU2 expression influences pathway(s) linked to cell cycle controls. Such effects are not observed in the CRISPR STAU2-KO cancer HCT116 cells nor in the STAU2-RNAi-depleted HeLa cells. Interestingly, a physiological decrease in the steady-state level of STAU2 is controlled by caspases. This effect of peptidases is counterbalanced by the activity of the CHK1 pathway suggesting that STAU2 partial degradation/stabilization fines tune cell cycle progression in unstressed cells. A large-scale proteomic analysis using STAU2/biotinylase fusion protein identifies known STAU2 interactors involved in RNA translation, localization, splicing, or decay confirming the role of STAU2 in the posttranscriptional regulation of gene expression. In addition, several proteins found in the nucleolus, including proteins of the ribosome biogenesis pathway and of the DNA damage response, are found in close proximity to STAU2. Strikingly, many of these proteins are linked to the kinase CHK1 pathway, reinforcing the link between STAU2 functions and the CHK1 pathway. Indeed, inhibition of the CHK1 pathway for 4 h dissociates STAU2 from proteins involved in translation and RNA metabolism.ConclusionsThese results indicate that STAU2 is involved in pathway(s) that control(s) cell proliferation, likely via mechanisms of posttranscriptional regulation, ribonucleoprotein complex assembly, genome integrity and/or checkpoint controls. The mechanism by which STAU2 regulates cell growth likely involves caspases and the kinase CHK1 pathway.


2010 ◽  
Vol 2010 ◽  
pp. 1-29 ◽  
Author(s):  
Nicoletta Filigheddu ◽  
Ilaria Gregnanin ◽  
Paolo E. Porporato ◽  
Daniela Surico ◽  
Beatrice Perego ◽  
...  

Endometriosis, defined as the presence of endometrial tissue outside the uterus, is a common gynecological disease with poorly understood pathogenesis. MicroRNAs are members of a class of small noncoding RNA molecules that have a critical role in posttranscriptional regulation of gene expression by repression of target mRNAs translation. We assessed differentially expressed microRNAs in ectopic endometrium compared with eutopic endometrium in 3 patients through microarray analysis. We identified 50 microRNAs differentially expressed and the differential expression of five microRNAs was validated by real-time RT-PCR in other 13 patients. We identifiedin silicotheir predicted targets, several of which match the genes that have been identified to be differentially expressed in ectopicversuseutopic endometrium in studies of gene expression. A functional analysis of the predicted targets indicates that several of these are involved in molecular pathways implicated in endometriosis, thus strengthening the hypothesis of the role of microRNAs in this pathology.


2009 ◽  
Vol 106 (17) ◽  
pp. 7028-7033 ◽  
Author(s):  
Zhe Ji ◽  
Ju Youn Lee ◽  
Zhenhua Pan ◽  
Bingjun Jiang ◽  
Bin Tian

The 3′ untranslated regions (3′ UTRs) of mRNAs containcis-acting elements for posttranscriptional regulation of gene expression. Here, we report that mouse genes tend to express mRNAs with longer 3′ UTRs as embryonic development progresses. This global regulation is controlled by alternative polyadenylation and coordinates with initiation of organogenesis and aspects of embryonic development, including morphogenesis, differentiation, and proliferation. Using myogenesis of C2C12 myoblast cells as a model, we recapitulated this process in vitro and found that 3′ UTR lengthening is likely caused by weakening of mRNA polyadenylation activity. Because alternative 3′ UTR sequences are typically longer and have higher AU content than constitutive ones, our results suggest that lengthening of 3′ UTR can significantly augment posttranscriptional control of gene expression during embryonic development, such as microRNA-mediated regulation.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
João Evangelista Bezerra ◽  
Ana Claudia Latronico

MicroRNAs play an essential role in posttranscriptional regulation of gene expression. They are evolutionary conserved, small, noncoding, 19–22-nucleotide RNAs, whose abnormalities, such as up- or downregulated expression, have been associated with several neoplasms, including adrenocortical tumors. Expression levels of distinct microRNAs can distinguish benign from malignant adrenal tumors. This current review provides recent data on the miRNAs profile in benign and malignant adrenocortical tumors diagnosed in adult and pediatric patients.


2019 ◽  
Vol 294 (28) ◽  
pp. 10998-11010 ◽  
Author(s):  
Xiao-Juan Yang ◽  
Hong Zhu ◽  
Shi-Rong Mu ◽  
Wen-Juan Wei ◽  
Xun Yuan ◽  
...  

The Y-box binding protein 1 (YB-1) is a member of the cold shock domain (CSD) protein family and is recognized as an oncogenic factor in several solid tumors. By binding to RNA, YB-1 participates in several steps of posttranscriptional regulation of gene expression, including mRNA splicing, stability, and translation; microRNA processing; and stress granule assembly. However, the mechanisms in YB-1–mediated regulation of RNAs are unclear. Previously, we used both systematic evolution of ligands by exponential enrichment (SELEX) and individual-nucleotide resolution UV cross-linking and immunoprecipitation coupled RNA-Seq (iCLIP-Seq) analyses, which defined the RNA-binding consensus sequence of YB-1 as CA(U/C)C. We also reported that through binding to its core motif CAUC in primary transcripts, YB-1 regulates the alternative splicing of a CD44 variable exon and the biogenesis of miR-29b-2 during both Drosha and Dicer steps. To elucidate the molecular basis of the YB-1–RNA interactions, we report high-resolution crystal structures of the YB-1 CSD in complex with different RNA oligos at 1.7 Å resolution. The structure revealed that CSD interacts with RNA mainly through π–π stacking interactions assembled by four highly conserved aromatic residues. Interestingly, YB-1 CSD forms a homodimer in solution, and we observed that two residues, Tyr-99 and Asp-105, at the dimer interface are important for YB-1 CSD dimerization. Substituting these two residues with Ala reduced CSD's RNA-binding activity and abrogated the splicing activation of YB-1 targets. The YB-1 CSD–RNA structures presented here at atomic resolution provide mechanistic insights into gene expression regulated by CSD-containing proteins.


1987 ◽  
Vol 7 (8) ◽  
pp. 3004-3007
Author(s):  
M W White ◽  
A K Oberhauser ◽  
C A Kuepfer ◽  
D R Morris

Two categories of mitogen-induced mRNAs were defined in T lymphocytes. The type 1 messages (represented by c-myc) were regulated transcriptionally, and their expression seemed to be calmodulin dependent. The type 2 messages (ornithine decarboxylase, actin, and alpha-tubulin) were regulated posttranscriptionally through activation of protein kinase C.


2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Maria Baou ◽  
Andrew Jewell ◽  
John J. Murphy

Posttranscriptional regulation of gene expression of mRNAs containing adenine-uridine rich elements (AREs) in their untranslated regions is mediated by a number of different proteins that interact with these elements to either stabilise or destabilise them. The present review concerns the TPA-inducible sequence 11 (TIS11) protein family, a small family of proteins, that appears to interact with ARE-containing mRNAs and promote their degradation. This family of proteins has been extensively studied in the past decade. Studies have focussed on determining their biochemical functions, identifying their target mRNAs, and determining their roles in cell functions and diseases.


2015 ◽  
Vol 6 (2) ◽  
pp. 149-155 ◽  
Author(s):  
Pál Perge ◽  
Zoltán Nagy ◽  
Ivan Igaz ◽  
Peter Igaz

AbstractMicroRNAs are short non-coding RNA molecules encoded by distinct genes involved in the posttranscriptional regulation of gene expression. Forming part of the epigenetic machinery, microRNAs are involved in several aspects of tumorigenesis. Deregulation of microRNA expression is a common feature of tumors. Overexpressed oncogenic and underexpressed tumor suppressor microRNAs have been described in many different tumors. MicroRNAs are released from tumors that might affect other cells within and outside the tumor. Circulating microRNAs might also be involved in a tumor surveillance mechanism. In this short overview, some important aspects of microRNA in tumors are discussed.


Sign in / Sign up

Export Citation Format

Share Document