Class Prediction with Microarray Datasets

Author(s):  
Simon Rogers ◽  
Richard D. Williams ◽  
Colin Campbell
2005 ◽  
Vol 2005 (2) ◽  
pp. 132-138 ◽  
Author(s):  
Dechang Chen ◽  
Zhenqiu Liu ◽  
Xiaobin Ma ◽  
Dong Hua

Gene selection is an important issue in analyzing multiclass microarray data. Among many proposed selection methods, the traditional ANOVA F test statistic has been employed to identify informative genes for both class prediction (classification) and discovery problems. However, the F test statistic assumes an equal variance. This assumption may not be realistic for gene expression data. This paper explores other alternative test statistics which can handle heterogeneity of the variances. We study five such test statistics, which include Brown-Forsythe test statistic and Welch test statistic. Their performance is evaluated and compared with that of F statistic over different classification methods applied to publicly available microarray datasets.


2019 ◽  
Vol 16 (4) ◽  
pp. 317-324
Author(s):  
Liang Kong ◽  
Lichao Zhang ◽  
Xiaodong Han ◽  
Jinfeng Lv

Protein structural class prediction is beneficial to protein structure and function analysis. Exploring good feature representation is a key step for this prediction task. Prior works have demonstrated the effectiveness of the secondary structure based feature extraction methods especially for lowsimilarity protein sequences. However, the prediction accuracies still remain limited. To explore the potential of secondary structure information, a novel feature extraction method based on a generalized chaos game representation of predicted secondary structure is proposed. Each protein sequence is converted into a 20-dimensional distance-related statistical feature vector to characterize the distribution of secondary structure elements and segments. The feature vectors are then fed into a support vector machine classifier to predict the protein structural class. Our experiments on three widely used lowsimilarity benchmark datasets (25PDB, 1189 and 640) show that the proposed method achieves superior performance to the state-of-the-art methods. It is anticipated that our method could be extended to other graphical representations of protein sequence and be helpful in future protein research.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 665
Author(s):  
Hui Yu ◽  
Yan Guo ◽  
Jingchun Chen ◽  
Xiangning Chen ◽  
Peilin Jia ◽  
...  

Transcriptomic studies of mental disorders using the human brain tissues have been limited, and gene expression signatures in schizophrenia (SCZ) remain elusive. In this study, we applied three differential co-expression methods to analyze five transcriptomic datasets (three RNA-Seq and two microarray datasets) derived from SCZ and matched normal postmortem brain samples. We aimed to uncover biological pathways where internal correlation structure was rewired or inter-coordination was disrupted in SCZ. In total, we identified 60 rewired pathways, many of which were related to neurotransmitter, synapse, immune, and cell adhesion. We found the hub genes, which were on the center of rewired pathways, were highly mutually consistent among the five datasets. The combinatory list of 92 hub genes was generally multi-functional, suggesting their complex and dynamic roles in SCZ pathophysiology. In our constructed pathway crosstalk network, we found “Clostridium neurotoxicity” and “signaling events mediated by focal adhesion kinase” had the highest interactions. We further identified disconnected gene links underlying the disrupted pathway crosstalk. Among them, four gene pairs (PAK1:SYT1, PAK1:RFC5, DCTN1:STX1A, and GRIA1:MAP2K4) were normally correlated in universal contexts. In summary, we systematically identified rewired pathways, disrupted pathway crosstalk circuits, and critical genes and gene links in schizophrenia transcriptomes.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Janna Hastings ◽  
Martin Glauer ◽  
Adel Memariani ◽  
Fabian Neuhaus ◽  
Till Mossakowski

AbstractChemical data is increasingly openly available in databases such as PubChem, which contains approximately 110 million compound entries as of February 2021. With the availability of data at such scale, the burden has shifted to organisation, analysis and interpretation. Chemical ontologies provide structured classifications of chemical entities that can be used for navigation and filtering of the large chemical space. ChEBI is a prominent example of a chemical ontology, widely used in life science contexts. However, ChEBI is manually maintained and as such cannot easily scale to the full scope of public chemical data. There is a need for tools that are able to automatically classify chemical data into chemical ontologies, which can be framed as a hierarchical multi-class classification problem. In this paper we evaluate machine learning approaches for this task, comparing different learning frameworks including logistic regression, decision trees and long short-term memory artificial neural networks, and different encoding approaches for the chemical structures, including cheminformatics fingerprints and character-based encoding from chemical line notation representations. We find that classical learning approaches such as logistic regression perform well with sets of relatively specific, disjoint chemical classes, while the neural network is able to handle larger sets of overlapping classes but needs more examples per class to learn from, and is not able to make a class prediction for every molecule. Future work will explore hybrid and ensemble approaches, as well as alternative network architectures including neuro-symbolic approaches.


PLoS ONE ◽  
2011 ◽  
Vol 6 (2) ◽  
pp. e17259 ◽  
Author(s):  
John Patrick Mpindi ◽  
Henri Sara ◽  
Saija Haapa-Paananen ◽  
Sami Kilpinen ◽  
Tommi Pisto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document