Actuation, Sensing, and Fabrication for In Vivo Magnetic Microrobots

Author(s):  
K. Berk Yesin ◽  
Karl Vollmers ◽  
Bradley J. Nelson
Keyword(s):  
2020 ◽  
Vol 6 (28) ◽  
pp. eaba5855 ◽  
Author(s):  
Veronika Magdanz ◽  
Islam S. M. Khalil ◽  
Juliane Simmchen ◽  
Guilherme P. Furtado ◽  
Sumit Mohanty ◽  
...  

We develop biohybrid magnetic microrobots by electrostatic self-assembly of nonmotile sperm cells and magnetic nanoparticles. Incorporating a biological entity into microrobots entails many functional advantages beyond shape templating, such as the facile uptake of chemotherapeutic agents to achieve targeted drug delivery. We present a single-step electrostatic self-assembly technique to fabricate IRONSperms, soft magnetic microswimmers that emulate the motion of motile sperm cells. Our experiments and theoretical predictions show that the swimming speed of IRONSperms exceeds 0.2 body length/s (6.8 ± 4.1 µm/s) at an actuation frequency of 8 Hz and precision angle of 45°. We demonstrate that the nanoparticle coating increases the acoustic impedance of the sperm cells and enables localization of clusters of IRONSperm using ultrasound feedback. We also confirm the biocompatibility and drug loading ability of these microrobots, and their promise as biocompatible, controllable, and detectable biohybrid tools for in vivo targeted therapy.


2019 ◽  
Vol 4 (30) ◽  
pp. eaav4317 ◽  
Author(s):  
Sungwoong Jeon ◽  
Sangwon Kim ◽  
Shinwon Ha ◽  
Seungmin Lee ◽  
Eunhee Kim ◽  
...  

Magnetic microrobots were developed for three-dimensional culture and the precise delivery of stem cells in vitro, ex vivo, and in vivo. Hippocampal neural stem cells attached to the microrobots proliferated and differentiated into astrocytes, oligodendrocytes, and neurons. Moreover, microrobots were used to transport colorectal carcinoma cancer cells to tumor microtissue in a body-on-a-chip, which comprised an in vitro liver-tumor microorgan network. The microrobots were also controlled in a mouse brain slice and rat brain blood vessel. Last, microrobots carrying mesenchymal stem cells derived from human nose were manipulated inside the intraperitoneal cavity of a nude mouse. The results indicate the potential of microrobots for the culture and delivery of stem cells.


2012 ◽  
pp. 252-275
Author(s):  
K. Belharet ◽  
D. Folio ◽  
A. Ferreira

2021 ◽  
Vol 4 (1) ◽  
pp. 46
Author(s):  
Gungun Lin ◽  
Yuan Liu ◽  
Guan Huang ◽  
Yinghui Chen ◽  
Denys Makarov ◽  
...  

Magnetic microrobots with versatile mechanical motion will enable many ex- and in vivo applications. Unfortunately, monolithic integration of multiple functions in a streamlined microrobotic body is still challenging due to the compromise between fabrication throughput, device footprints, and material choices. In this talk, I will present a unified framework architecture for microrobotic functionalization to enable magnetically steered locomotion, chemical sensing and in vivo tracking. This has been achieved through stratifying stimuli-responsive nanoparticles in a hydrogelmicro-disk. We uncovered the key mechanism of leveraging spatially alternating magnetic energy potential to control a Euler’s disk-like microrobot to locomote swiftly on its sidewall. The results suggest great potential for microrobots to locomote while cooperating a wide range of functions, tailorable for universal application scenarios.


Author(s):  
K. Berk Yesin ◽  
Philipp Exner ◽  
Karl Vollmers ◽  
Bradley J. Nelson

Author(s):  
S. Phyllis Steamer ◽  
Rosemarie L. Devine

The importance of radiation damage to the skin and its vasculature was recognized by the early radiologists. In more recent studies, vascular effects were shown to involve the endothelium as well as the surrounding connective tissue. Microvascular changes in the mouse pinna were studied in vivo and recorded photographically over a period of 12-18 months. Radiation treatment at 110 days of age was total body exposure to either 240 rad fission neutrons or 855 rad 60Co gamma rays. After in vivo observations in control and irradiated mice, animals were sacrificed for examination of changes in vascular fine structure. Vessels were selected from regions of specific interest that had been identified on photomicrographs. Prominent ultrastructural changes can be attributed to aging as well as to radiation treatment. Of principal concern were determinations of ultrastructural changes associated with venous dilatations, segmental arterial stenosis and tortuosities of both veins and arteries, effects that had been identified on the basis of light microscopic observations. Tortuosities and irregularly dilated vein segments were related to both aging and radiation changes but arterial stenosis was observed only in irradiated animals.


Author(s):  
E. J. Kollar

The differentiation and maintenance of many specialized epithelial structures are dependent on the underlying connective tissue stroma and on an intact basal lamina. These requirements are especially stringent in the development and maintenance of the skin and oral mucosa. The keratinization patterns of thin or thick cornified layers as well as the appearance of specialized functional derivatives such as hair and teeth can be correlated with the specific source of stroma which supports these differentiated expressions.


Author(s):  
M.J. Murphy ◽  
R.R. Price ◽  
J.C. Sloman

The in vitro human tumor cloning assay originally described by Salmon and Hamburger has been applied recently to the investigation of differential anti-tumor drug sensitivities over a broad range of human neoplasms. A major problem in the acceptance of this technique has been the question of the relationship between the cultured cells and the original patient tumor, i.e., whether the colonies that develop derive from the neoplasm or from some other cell type within the initial cell population. A study of the ultrastructural morphology of the cultured cells vs. patient tumor has therefore been undertaken to resolve this question. Direct correlation was assured by division of a common tumor mass at surgical resection, one biopsy being fixed for TEM studies, the second being rapidly transported to the laboratory for culture.


Author(s):  
H. Engelhardt ◽  
R. Guckenberger ◽  
W. Baumeister

Bacterial photosynthetic membranes contain, apart from lipids and electron transport components, reaction centre (RC) and light harvesting (LH) polypeptides as the main components. The RC-LH complexes in Rhodopseudomonas viridis membranes are known since quite seme time to form a hexagonal lattice structure in vivo; hence this membrane attracted the particular attention of electron microscopists. Contrary to previous claims in the literature we found, however, that 2-D periodically organized photosynthetic membranes are not a unique feature of Rhodopseudomonas viridis. At least five bacterial species, all bacteriophyll b - containing, possess membranes with the RC-LH complexes regularly arrayed. All these membranes appear to have a similar lattice structure and fine-morphology. The lattice spacings of the Ectothiorhodospira haloohloris, Ectothiorhodospira abdelmalekii and Rhodopseudomonas viridis membranes are close to 13 nm, those of Thiocapsa pfennigii and Rhodopseudomonas sulfoviridis are slightly smaller (∼12.5 nm).


Author(s):  
Frederick A. Murphy ◽  
Alyne K. Harrison ◽  
Sylvia G. Whitfield

The bullet-shaped viruses are currently classified together on the basis of similarities in virion morphology and physical properties. Biologically and ecologically the member viruses are extremely diverse. In searching for further bases for making comparisons of these agents, the nature of host cell infection, both in vivo and in cultured cells, has been explored by thin-section electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document