Thermally-induced pore pressure generation in a nearly-saturated cementitious material

Author(s):  
A. P. S. Selvadurai
2020 ◽  
Vol 53 (12) ◽  
pp. 5715-5744
Author(s):  
Xiyang Xie ◽  
Andreas Bauer ◽  
Jørn F. Stenebråten ◽  
Sigurd Bakheim ◽  
Alexandre Lavrov ◽  
...  

AbstractThe current study shows that heating a cased borehole in low-permeability shale rock can induce plastic deformation, leading to the closure of the casing annulus and decreasing annulus connectivity. The thermally induced borehole closure is interesting for the field operation of plug and abandonment (P&A), as it potentially saves operation cost and time by avoiding cutting casing and cementing. Lab experiments and numerical simulations are implemented to investigate the thermally induced borehole closure. Pierre shale and a field shale are tested. The lab experiments are performed by heating the borehole wall in a 10-cm-OD hollow cylinder specimen. Here, a novel experimental setup is applied, allowing for measuring temperature and pore pressure at different radii inside the specimen. Both the experimental data and the post-test CT images of the rock samples indicate the rock failure by borehole heating, and under certain conditions, heating results in an annulus closure. The decrease of hydraulic conductivity through the casing annulus is observed, but this decrease is not enough to form the hydraulic-sealed annulus barrier, based on the results obtained so far. Lab-scale finite-element simulations aim to match the lab results to obtain poro-elastoplastic parameters. Then the field-scale simulations assess the formation of shale barriers by heating in field scenarios. Overall, (i) the lab experiments show that heating a borehole can increase the pore pressure in shale and hence induce rock failure; (ii) the numerical simulations match the experimental results reasonably well and indicate that the heating-induced borehole closure can sufficiently seal the casing annulus in the field-scale simulation.


2005 ◽  
Vol 42 (5) ◽  
pp. 1318-1329 ◽  
Author(s):  
Ruiping Guo ◽  
Jason Martino ◽  
David Dixon

The Tunnel Sealing Experiment (TSX) was a two-phase international project funded by Canada, Japan, France, and the United States. The first phase was pressurizing the TSX chamber to 4 MPa to investigate the ability of clay and concrete bulkheads to reduce hydraulic flows. The second phase involved circulating heated water through the chamber to evaluate the influence of elevated temperature on the performance of the bulkheads and adjacent rock. A numerical analysis to simulate thermohydraulic evolution of the bulkheads and surrounding rock of the TSX was conducted to help in understanding the physical test process and the interaction between heat and pore pressure evolutions. The simulated rock temperature matched the measured data quite well; however the simulated bulkhead temperatures were greater than the measured temperatures. The difference may have been caused by entrapped air or formation of microchannels in the chamber sand, which would decrease the amount of heat reaching the bulkheads. The simulated thermally induced pore pressure increase in the clay bulkhead reasonably matched the measured data for the saturated portion. The difference in magnitude between simulated and measured rock pore pressures indicates that thermo hy draulic simulation should be coupled with a mechanical component when the stiffness of the media is large and hydraulic conductivity is low.Key words: numerical modelling, Tunnel Sealing Experiment, nuclear waste management, hydraulic head, thermal conduction, thermal convection.


Author(s):  
C. S. Giggins ◽  
J. K. Tien ◽  
B. H. Kear ◽  
F. S. Pettit

The performance of most oxidation resistant alloys and coatings is markedly improved if the oxide scale strongly adheres to the substrate surface. Consequently, in order to develop alloys and coatings with improved oxidation resistance, it has become necessary to determine the conditions that lead to spallation of oxides from the surfaces of alloys. In what follows, the morphological features of nonadherent Al2O3, and the substrate surfaces from which the Al2O3 has spalled, are presented and related to oxide spallation.The Al2O3, scales were developed by oxidizing Fe-25Cr-4Al (w/o) and Ni-rich Ni3 (Al,Ta) alloys in air at 1200°C. These scales spalled from their substrates upon cooling as a result of thermally induced stresses. The scales and the alloy substrate surfaces were then examined by scanning and replication electron microscopy.The Al2O3, scales from the Fe-Cr-Al contained filamentary protrusions at the oxide-gas interface, Fig. 1(a). In addition, nodules of oxide have been developed such that cavities were formed between the oxide and the substrate, Fig. 1(a).


Author(s):  
R.T. Blackham ◽  
J.J. Haugh ◽  
C.W. Hughes ◽  
M.G. Burke

Essential to the characterization of materials using analytical electron microscopy (AEM) techniques is the specimen itself. Without suitable samples, detailed microstructural analysis is not possible. Ultramicrotomy, or diamond knife sectioning, is a well-known mechanical specimen preparation technique which has been gaining attention in the materials science area. Malis and co-workers and Glanvill have demonstrated the usefulness and applicability of this technique to the study of a wide variety of materials including Al alloys, composites, and semiconductors. Ultramicrotomed specimens have uniform thickness with relatively large electron-transparent areas which are suitable for AEM anaysis.Interface Analysis in Type 316 Austenitic Stainless Steel: STEM-EDS microanalysis of grain boundaries in austenitic stainless steels provides important information concerning the development of Cr-depleted zones which accompany M23C6 precipitation, and documentation of radiation induced segregation (RIS). Conventional methods of TEM sample preparation are suitable for the evaluation of thermally induced segregation, but neutron irradiated samples present a variety of problems in both the preparation and in the AEM analysis, in addition to the handling hazard.


2021 ◽  
Author(s):  
Cyril Rajnák ◽  
Romana Mičová ◽  
Ján Moncoľ ◽  
Ľubor Dlháň ◽  
Christoph Krüger ◽  
...  

A pentadentate Schiff-base ligand 3,5Cl-L2− and NCSe− form a iron(iii) mononuclear complex [Fe(3,5Cl-L)(NCSe)], which shows a thermally induced spin crossover with a broad hysteresis width of 24 K between 123 K (warming) and 99 K (cooling).


Sign in / Sign up

Export Citation Format

Share Document