Protein Phosphatases in Plant Growth Signalling Pathways

Author(s):  
Alois Schweighofer ◽  
Irute Meskiene
2018 ◽  
Vol 39 (02) ◽  
pp. 140-151 ◽  
Author(s):  
Kerstin Jurk ◽  
Ulrich Walter

AbstractAs circulating sentinels of vascular integrity, platelets act as crucial haemostatic cells as well as important inflammatory and immune cells, whereas under pathological conditions platelets drive thrombotic as well as non-thrombotic diseases related to chronic inflammation. In addition, platelets serve as an important cellular model to study the biology and pharmacology of signal transduction pathways. Platelet inhibition and activation responses are mediated by multiple signalling networks, which are tightly regulated by balanced catalysis of protein phosphorylation and dephosphorylation through protein kinases and protein phosphatases, respectively. However, we are only at the beginning of understanding the complexity of interacting signalling pathways and their impact on platelet function. Here, we review current functional and proteomic approaches that lead to novel concepts of understanding the proteome, kinome and phosphatome of human platelets. A more in-depth understanding of both protein kinases and protein phosphatases using human platelets will contribute to evaluate their further diagnostic and therapeutic potential in inflammation- and immune-mediated diseases.


2020 ◽  
Vol 21 (2) ◽  
pp. 395 ◽  
Author(s):  
Ruth Martín ◽  
Vilte Stonyte ◽  
Sandra Lopez-Aviles

Eukaryotic cells make the decision to proliferate, to differentiate or to cease dividing during G1, before passage through the restriction point or Start. Keeping cyclin-dependent kinase (CDK) activity low during this period restricts commitment to a new cell cycle and is essential to provide the adequate timeframe for the sensing of environmental signals. Here, we review the role of protein phosphatases in the modulation of CDK activity and as the counteracting force for CDK-dependent substrate phosphorylation, in budding and fission yeast. Moreover, we discuss recent findings that place protein phosphatases in the interface between nutritional signalling pathways and the cell cycle machinery.


2010 ◽  
Vol 430 (2) ◽  
pp. 191-198 ◽  
Author(s):  
Ting Liu ◽  
Xin-Hua Feng

Tight regulation of TGF-β (transforming growth factor-β) superfamily signalling is important for normal cellular functions and tissue homoeostasis. Since TGF-β superfamily signalling pathways are activated by a short phosphorylation cascade, from receptor phosphorylation to subsequent phosphorylation and activation of downstream signal transducer R-Smads (receptor-activated Smads), reversible phosphorylation serves as a critical step to assure proper TGF-β signalling. The present article will review the current progress on the understanding of dynamic phosphorylation in TGF-β signalling and the essential role of protein phosphatases in this process.


2019 ◽  
Vol 100 (5) ◽  
pp. 1007-1021 ◽  
Author(s):  
Wanda M. Waterworth ◽  
Michael Wilson ◽  
Dapeng Wang ◽  
Thomas Nuhse ◽  
Stacey Warward ◽  
...  

Author(s):  
Elina Welchen ◽  
M Victoria Canal ◽  
Diana E Gras ◽  
Daniel H Gonzalez

Abstract Plant mitochondria harbour complex metabolic routes that are interconnected with those of other cell compartments and changes in mitochondrial function remotely influence processes in different parts of the cell. This implies the existence of signals that convey information about mitochondrial function to the rest of the cell. Increasing evidence indicates that metabolic and redox signals are important for this process, but probably also changes in ion fluxes, protein relocalization and physical contacts with other organelles are involved. Besides possible direct effects of these signalling molecules on cellular functions, changes in mitochondrial physiology also affect the activity of different signalling pathways that modulate plant growth and stress responses. As a consequence, mitochondria influence the responses to internal and external factors that modify the activity of these pathways and associated biological processes. Acting through the activity of hormonal signalling pathways, mitochondria may also exert remote control over distant organs or plant tissues. In addition, an intimate cross-talk of mitochondria with energy signalling pathways, like those represented by Target of Rapamycin and Sucrose non-fermenting1-related protein kinase 1, can be envisaged. This review discusses available evidence on the role of mitochondria in shaping plant growth and stress responses through different signalling pathways.


2020 ◽  
Vol 126 (5) ◽  
pp. 807-824
Author(s):  
Liu Wang ◽  
Bret E Hart ◽  
Ghazanfar Abbas Khan ◽  
Edward R Cruz ◽  
Staffan Persson ◽  
...  

Abstract Background Phytohormones are small molecules that regulate virtually every aspect of plant growth and development, from basic cellular processes, such as cell expansion and division, to whole plant environmental responses. While the phytohormone levels and distribution thus tell the plant how to adjust itself, the corresponding growth alterations are actuated by cell wall modification/synthesis and internal turgor. Plant cell walls are complex polysaccharide-rich extracellular matrixes that surround all plant cells. Among the cell wall components, cellulose is typically the major polysaccharide, and is the load-bearing structure of the walls. Hence, the cell wall distribution of cellulose, which is synthesized by large Cellulose Synthase protein complexes at the cell surface, directs plant growth. Scope Here, we review the relationships between key phytohormone classes and cellulose deposition in plant systems. We present the core signalling pathways associated with each phytohormone and discuss the current understanding of how these signalling pathways impact cellulose biosynthesis with a particular focus on transcriptional and post-translational regulation. Because cortical microtubules underlying the plasma membrane significantly impact the trajectories of Cellulose Synthase Complexes, we also discuss the current understanding of how phytohormone signalling impacts the cortical microtubule array. Conclusion Given the importance of cellulose deposition and phytohormone signalling in plant growth and development, one would expect that there is substantial cross-talk between these processes; however, mechanisms for many of these relationships remain unclear and should be considered as the target of future studies.


2007 ◽  
Vol 34 (11) ◽  
pp. 995 ◽  
Author(s):  
Po-Yu Chen ◽  
Tsai-Lien Huang ◽  
Hao-Jen Huang

It is well known that small quantities of nickel (Ni) are essential for plant species, and higher concentrations of Ni retard plant growth. However, the molecular mechanisms responsible for the regulation of plant growth by Ni are not well understood. The aim of this study is to investigate the early signalling pathways activated by Ni on rice (Oryza sativa L.) root. We showed that Ni elicited a remarkable increase in myelin basic protein (MBP) kinase activities. By immunoblot and immunoprecipitation analyses, it is suggested that Ni-activated 40- and 42-kDa MBP kinases are mitogen-activated protein kinases (MAPKs). Pretreatment of rice roots with the antioxidant, glutathione (GSH), the phospholipase D (PLD) inhibitor, n-butanol, and the calmodulin and CDPK antagonist and W7 inhibited Ni-induced MAPK activation. These results suggest that various signalling components are involved in transduction of the Ni signal in rice roots.


2005 ◽  
Vol 33 (1) ◽  
pp. 269-271 ◽  
Author(s):  
F. Rolland ◽  
J. Sheen

Plant sugar signalling operates in a complex network with plant-specific hormone signalling pathways. Hexokinase was identified as an evolutionarily conserved glucose sensor that integrates light, hormone and nutrient signalling to control plant growth and development.


2002 ◽  
Vol 38 ◽  
pp. 9-19 ◽  
Author(s):  
Guy S Salvesen

The ability of metazoan cells to undergo programmed cell death is vital to both the precise development and long-term survival of the mature adult. Cell deaths that result from engagement of this programme end in apoptosis, the ordered dismantling of the cell that results in its 'silent' demise, in which packaged cell fragments are removed by phagocytosis. This co-ordinated demise is mediated by members of a family of cysteine proteases known as caspases, whose activation follows characteristic apoptotic stimuli, and whose substrates include many proteins, the limited cleavage of which causes the characteristic morphology of apoptosis. In vertebrates, a subset of caspases has evolved to participate in the activation of pro-inflammatory cytokines, and thus members of the caspase family participate in one of two very distinct intracellular signalling pathways.


2015 ◽  
Vol 58 ◽  
pp. 61-70 ◽  
Author(s):  
Paul B. Larsen

Ethylene is the simplest unsaturated hydrocarbon, yet it has profound effects on plant growth and development, including many agriculturally important phenomena. Analysis of the mechanisms underlying ethylene biosynthesis and signalling have resulted in the elucidation of multistep mechanisms which at first glance appear simple, but in fact represent several levels of control to tightly regulate the level of production and response. Ethylene biosynthesis represents a two-step process that is regulated at both the transcriptional and post-translational levels, thus enabling plants to control the amount of ethylene produced with regard to promotion of responses such as climacteric flower senescence and fruit ripening. Ethylene production subsequently results in activation of the ethylene response, as ethylene accumulation will trigger the ethylene signalling pathway to activate ethylene-dependent transcription for promotion of the response and for resetting the pathway. A more detailed knowledge of the mechanisms underlying biosynthesis and the ethylene response will ultimately enable new approaches to be developed for control of the initiation and progression of ethylene-dependent developmental processes, many of which are of horticultural significance.


Sign in / Sign up

Export Citation Format

Share Document