Cell-Extracellular Matrix Adhesion Assay

Author(s):  
Mehmet Varol
Development ◽  
1991 ◽  
Vol 113 (1) ◽  
pp. 151-164 ◽  
Author(s):  
F.G. Rathjen ◽  
J.M. Wolff ◽  
R. Chiquet-Ehrismann

We report here the characterization of restrictin, a novel chick neural extracellular matrix glycoprotein associated with the cell recognition molecule F11. Immunoaffinity chromatography using monoclonal antibody 23–13 directed to restrictin yield a major relative molecular mass band at 170 × 10(3) and minor bands at 160, 180, 250 and 320 × 10(3) which are immunologically related to each other. Neural cells attach on immobilized restrictin in a short-term adhesion assay. This adhesion can be blocked specifically by monoclonal or polyclonal antibodies to restrictin but not by antibodies to F11 or by the peptide GRGDSP. Antibodies to restrictin do not interfere with the fasciculation of retinal axons and the isolated restrictin does not stimulate the outgrowth of axons. In the developing nervous system, restrictin is localized in very restricted regions and is found within areas of F11 expression. The timing and pattern of expression of restrictin and its cell attachment activity suggest that it participates in developmental events of the nervous system.


2005 ◽  
Vol 20 (4) ◽  
pp. 235-241 ◽  
Author(s):  
E. Greco ◽  
D. Basso ◽  
P. Fogar ◽  
S. Mazza ◽  
F. Navaglia ◽  
...  

Background We investigated in vitro whether IL-1β and TGF-β1 affect pancreatic cancer cell growth, adhesion to the extracellular matrix and Matrigel invasion. Materials and methods Adhesion to fibronectin, laminin and type I collagen, and Matrigel invasion after stimulation with saline, IL-1β and TGF-β1 were evaluated using three primary and three metastatic pancreatic cancer cell lines. Results Extracellular matrix adhesion of control cells varied independently of the metastatic characteristics of the studied cell lines, whereas Matrigel invasion of control cells was partly correlated with the in vivo metastatic potential. IL-1β did not influence extracellular matrix adhesion, whereas it significantly enhanced the invasiveness of three of the six cell lines. TGF-β1 affected the adhesion of one cell line, and exerted contrasting effects on Matrigel invasion of different cell lines. Conclusions IL-1β enhances the invasive capacity of pancreatic cancer cells, whereas TGF-β1 has paradoxical effects on pancreatic cancer cells; this makes it difficult to interfere with TGF-β1 signaling in pancreatic cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document