scholarly journals FlowerNet — How to design a user friendly Sensor Network

Author(s):  
Bjoern Gressmann ◽  
Horst Hellbrueck
Keyword(s):  
2018 ◽  
Vol 7 (3.6) ◽  
pp. 281
Author(s):  
J Srirampavan

Embedded systems in Agriculture play a vital role in unifying the work involved and improve conservations. Designing a smart as well as a cost efficient and more user-friendly system will be idealistic challenge. The following system that has been proposed is designed with those ideal constraints in mind. It consists of a Raspberry pi3 as a gateway that links the sensor networks with the cloud. To improve security an MQTT protocol is used for cloud connectivity. The communication between the sensor networks is managed by NRF24L01. The Sensor network is a separate entity that can used like a plug and play device and is built by a micro controller with a LCD display and an interfaced GPS. Multicasting is also possible between sensor networks and the gateway. The processed data from the sensor networks is sent through NRF24L01 to the gateway. The gateway further processes and encapsulates the data and through MQTT the data gets stored on the cloud. This cloud data can be accessed through computer or mobile device  


Sensors ◽  
2016 ◽  
Vol 16 (7) ◽  
pp. 969 ◽  
Author(s):  
Ehsan Ahvar ◽  
Gyu Lee ◽  
Son Han ◽  
Noel Crespi ◽  
Imran Khan

Author(s):  
Mrs. uma sharad patil

In this paper, study of wireless SCADA system which is powerful setup for monitoring and controlling the various applications from remotely placed is presented. All communication between GSM modem and user are wireless based, this translates into lowest cost compared to all other systems. Wireless based solutions have universally accepted, familiar and user friendly system. Real-time logging would allow warnings to be flagged to the relevant personnel (e.g. an SMS warning message to the supervisors) and allow corrective action to be taken before the quality and value of the catch is degraded.


2019 ◽  
Vol 16 (11) ◽  
pp. 4839-4852
Author(s):  
Safa Saad Hussein ◽  
C. B. M. Rashidi ◽  
Hanan Ali Alrikabi ◽  
S. A. Aljunid ◽  
Muataz H. Salih ◽  
...  

Sensor networks that utilises wireless technology can be broken down into many smaller fields, one of it is known as Wireless Body Area Sensor Network (WBASN). Its inception is the product of advanced progress made in sensor networks that utilises wireless technology. Immense progress amassed in terms of technology has culminated in the creation of user-friendly technology that could be worn and minute-sized electronic parts. Consequently, this area of study has achieved huge interest prevalently as the result of its wide and diverse range of implementations, especially in the medical sector that deals with wellbeing and care. Current day scenario observes the existence of minute sensors that are enabled to be posited on the human anatomy for purposes of documentation on an assortment of physical constants to reciprocate appropriate responses. Hence, it forms a perceptive and vigilant scheme that can provide a prompt notification towards acute and complex health incidences, and can be utilised for diagnostic purposes to treat diseases. In view of the topic being of broad and current interest, the objective of this study is engaged in the presentation of a multiplex component of cutting-edge WBASN. This involves the transmission structures, applications in WBASN, programming core, concerns on security, and routing conventions that is adept in its use of energy. We endeavour to encapsulate the most up-to-date progress and expounded on the scientific mechanics of radio that is available that is related to this kind of network. Prospective perspectives and problems will be deliberated pertaining this aspect.


Author(s):  
B. Lencova ◽  
G. Wisselink

Recent progress in computer technology enables the calculation of lens fields and focal properties on commonly available computers such as IBM ATs. If we add to this the use of graphics, we greatly increase the applicability of design programs for electron lenses. Most programs for field computation are based on the finite element method (FEM). They are written in Fortran 77, so that they are easily transferred from PCs to larger machines.The design process has recently been made significantly more user friendly by adding input programs written in Turbo Pascal, which allows a flexible implementation of computer graphics. The input programs have not only menu driven input and modification of numerical data, but also graphics editing of the data. The input programs create files which are subsequently read by the Fortran programs. From the main menu of our magnetic lens design program, further options are chosen by using function keys or numbers. Some options (lens initialization and setting, fine mesh, current densities, etc.) open other menus where computation parameters can be set or numerical data can be entered with the help of a simple line editor. The "draw lens" option enables graphical editing of the mesh - see fig. I. The geometry of the electron lens is specified in terms of coordinates and indices of a coarse quadrilateral mesh. In this mesh, the fine mesh with smoothly changing step size is calculated by an automeshing procedure. The options shown in fig. 1 allow modification of the number of coarse mesh lines, change of coordinates of mesh points or lines, and specification of lens parts. Interactive and graphical modification of the fine mesh can be called from the fine mesh menu. Finally, the lens computation can be called. Our FEM program allows up to 8000 mesh points on an AT computer. Another menu allows the display of computed results stored in output files and graphical display of axial flux density, flux density in magnetic parts, and the flux lines in magnetic lenses - see fig. 2. A series of several lens excitations with user specified or default magnetization curves can be calculated and displayed in one session.


2012 ◽  
Vol 21 (2) ◽  
pp. 60-71 ◽  
Author(s):  
Ashley Alliano ◽  
Kimberly Herriger ◽  
Anthony D. Koutsoftas ◽  
Theresa E. Bartolotta

Abstract Using the iPad tablet for Augmentative and Alternative Communication (AAC) purposes can facilitate many communicative needs, is cost-effective, and is socially acceptable. Many individuals with communication difficulties can use iPad applications (apps) to augment communication, provide an alternative form of communication, or target receptive and expressive language goals. In this paper, we will review a collection of iPad apps that can be used to address a variety of receptive and expressive communication needs. Based on recommendations from Gosnell, Costello, and Shane (2011), we describe the features of 21 apps that can serve as a reference guide for speech-language pathologists. We systematically identified 21 apps that use symbols only, symbols and text-to-speech, and text-to-speech only. We provide descriptions of the purpose of each app, along with the following feature descriptions: speech settings, representation, display, feedback features, rate enhancement, access, motor competencies, and cost. In this review, we describe these apps and how individuals with complex communication needs can use them for a variety of communication purposes and to target a variety of treatment goals. We present information in a user-friendly table format that clinicians can use as a reference guide.


Sign in / Sign up

Export Citation Format

Share Document