Stress Response Signal Transduction

Author(s):  
Xiaoming Hu ◽  
J. R. Perez-Polo
2014 ◽  
Vol 74 ◽  
pp. 176-184 ◽  
Author(s):  
Ji Chen ◽  
Woo Young Bang ◽  
Yuno Lee ◽  
Songmi Kim ◽  
Keun Woo Lee ◽  
...  

2021 ◽  
Author(s):  
Ting Pan ◽  
Yangxuan Liu ◽  
Chengcheng Ling ◽  
Yuying Tang ◽  
Wei Tang ◽  
...  

AbstractClathrin-mediated vesicular formation and trafficking are highly conserved in eukaryotic cells and are responsible for molecular cargo transport and signal transduction among organelles. It remains largely unknown whether clathrin-coated vesicles can be generated from chloroplasts. CHLOROPLAST VESICULATION (CV)-containing vesicles (CVVs) generate from chloroplasts and mediate chloroplast degradation under abiotic stress. In this study, we showed that CV interacted with the clathrin heavy chain (CHC) and induced vesicle budding from the chloroplast inner envelope membrane. Defects on CHC2 and the dynamin-encoding DRP1A gene affected CVV budding and releasing from chloroplast. CHC2 is also required for CV-induced chloroplast degradation and hypersensitivity to water stress. Moreover, GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE (GAPC) interacts with CV and impairs the CV-CHC2 interaction. GAPC1 overexpression inhibited CV-mediated chloroplast degradation and hypersensitivity to water stress. CV silencing alleviated the hypersensitivity of gapc1gapc2 plant to water stress. Together, our work revealed a pathway of clathrin-assisted CVV budding from the chloroplast inner envelope membrane, which mediated the stress-induced chloroplast degradation and stress response.


2020 ◽  
Author(s):  
Jingjing Wang ◽  
Cong An ◽  
Hailin Guo ◽  
Xiangyang Yang ◽  
Jingbo Chen ◽  
...  

Abstract Background: Areas with saline soils are sparsely populated and have fragile ecosystems, which severely restricts the sustainable development of local economies. Zoysia grasses are recognized as excellent warm-season turfgrasses worldwide, with high salt tolerance and superior growth in saline-alkali soils. However, the mechanism underlying the salt tolerance of Zoysia species remains unknown. Results: The phenotypic and physiological responses of two contrasting materials, Zoysia japonica Steud. Z004 (salt sensitive) and Z011 (salt tolerant) in response to salt stress were studied. The results show that Z011 was more salt tolerant than was Z004, with the former presenting greater K+/Na+ ratios in both its leaves and roots. To study the molecular mechanisms underlying salt tolerance further, we compared the transcriptomes of the two materials at different time points (0 h, 1 h, 24 h, and 72 h) and from different tissues (leaves and roots) under salt treatment. The 24-h time point and the roots might make significant contributions to the salt tolerance. Moreover, GO and KEGG analyses of different comparisons revealed that the key DEGs participating in the salt-stress response belonged to the hormone pathway, various TF families and the DUF family. Conclusions: Z011 may have improved salt tolerance by reducing Na+ transport from the roots to the leaves, increasing K+ absorption in the roots and reducing K+ secretion from the leaves to maintain a significantly greater K+/Na+ ratio. Twenty-four hours might be a relatively important time point for the salt-stress response of zoysiagrass. The auxin signal transduction family, ABA signal transduction family, WRKY TF family and bHLH TF family may be the most important families in Zoysia salt-stress regulation. This study provides fundamental information concerning the salt-stress response of Zoysia and improves the understanding of molecular mechanisms in salt-tolerant plants.


PLoS ONE ◽  
2011 ◽  
Vol 6 (7) ◽  
pp. e21323 ◽  
Author(s):  
Mélanie Falord ◽  
Ulrike Mäder ◽  
Aurélia Hiron ◽  
Michel Débarbouillé ◽  
Tarek Msadek

2005 ◽  
Vol 33 (6) ◽  
pp. 1316-1318 ◽  
Author(s):  
V. Henn ◽  
E. Stefan ◽  
G.S. Baillie ◽  
M.D. Houslay ◽  
W. Rosenthal ◽  
...  

The cAMP/PKA (protein kinase A) signalling pathway is activated by a plethora of stimuli. To facilitate the specificity of a cellular response, signal transduction complexes are formed and segregated to discrete sites (compartmentalization). cAMP/PKA signalling compartments are maintained by AKAPs (A-kinase anchoring proteins) which bind PKA and other signalling proteins, and by PDEs (phosphodiesterases). The latter hydrolyse cAMP and thus limit its diffusion and terminate PKA activity. An example of a cAMP-dependent process requiring compartmentalization of cAMP/PKA signals is arginine-vasopressin-regulated water reabsorption in renal principal cells. A detailed understanding of the protein interactions within a signal transduction complex offers the possibility to design agents influencing PKA binding to a specific AKAP, the targeting of an AKAP or the interactions of AKAPs with other signalling molecules. The ability to specifically modulate selected branches of a signal transduction pathway would greatly advance basic research, and may lead to new drugs suitable for the treatment of diseases caused by dysregulation of anchored PKA signalling (e.g. renal and cardiovascular diseases).


Sign in / Sign up

Export Citation Format

Share Document