Flux Tower Sites, State of the Art, and Network Design

Author(s):  
A. Johannes Dolman ◽  
Riccardo Valentini ◽  
Margriet Groenendijk ◽  
Dimmie Hendriks
Author(s):  
Piyawat Chanintrakul ◽  
Adrian E. Coronado Mondragon ◽  
Chandra Lalwani ◽  
Chee Yew Wong

2021 ◽  
Vol 10 (1) ◽  
pp. 45-52
Author(s):  
S. Neelambike ◽  
C. Amith Shekhar ◽  
B. H. Rekha ◽  
Bhavana S. Patil

Being ad-hoc in design, VA NET is a form of networks generated by the idea of building up a network of cars for a specific needs or circumstance. In addition to the benefits, VANET poses a large number of challenges such as providing QoS, high bandwidth and connectivity, and vehicle and individual privacy security. Each report discusses VANET 's state-of-the-art, explaining the relevant problems. We address in depth network design, signal modelling and propagation mechanisms m, usability modeling, routing protocols and network security. The paper's key results are that an effective and stable VANET satisfies all architecture criteria such as QoS, minimal latency, low BER and high PDR. At the end of the paper are addressed several primary work areas and challenges at VANET.


Author(s):  
Shuai Yang ◽  
Jiaying Liu ◽  
Wenjing Wang ◽  
Zongming Guo

Text effects transfer technology automatically makes the text dramatically more impressive. However, previous style transfer methods either study the model for general style, which cannot handle the highly-structured text effects along the glyph, or require manual design of subtle matching criteria for text effects. In this paper, we focus on the use of the powerful representation abilities of deep neural features for text effects transfer. For this purpose, we propose a novel Texture Effects Transfer GAN (TET-GAN), which consists of a stylization subnetwork and a destylization subnetwork. The key idea is to train our network to accomplish both the objective of style transfer and style removal, so that it can learn to disentangle and recombine the content and style features of text effects images. To support the training of our network, we propose a new text effects dataset with as much as 64 professionally designed styles on 837 characters. We show that the disentangled feature representations enable us to transfer or remove all these styles on arbitrary glyphs using one network. Furthermore, the flexible network design empowers TET-GAN to efficiently extend to a new text style via oneshot learning where only one example is required. We demonstrate the superiority of the proposed method in generating high-quality stylized text over the state-of-the-art methods.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 936 ◽  
Author(s):  
Nebojsa Bacanin ◽  
Timea Bezdan ◽  
Eva Tuba ◽  
Ivana Strumberger ◽  
Milan Tuba

Convolutional neural networks have a broad spectrum of practical applications in computer vision. Currently, much of the data come from images, and it is crucial to have an efficient technique for processing these large amounts of data. Convolutional neural networks have proven to be very successful in tackling image processing tasks. However, the design of a network structure for a given problem entails a fine-tuning of the hyperparameters in order to achieve better accuracy. This process takes much time and requires effort and expertise from the domain. Designing convolutional neural networks’ architecture represents a typical NP-hard optimization problem, and some frameworks for generating network structures for a specific image classification tasks have been proposed. To address this issue, in this paper, we propose the hybridized monarch butterfly optimization algorithm. Based on the observed deficiencies of the original monarch butterfly optimization approach, we performed hybridization with two other state-of-the-art swarm intelligence algorithms. The proposed hybrid algorithm was firstly tested on a set of standard unconstrained benchmark instances, and later on, it was adapted for a convolutional neural network design problem. Comparative analysis with other state-of-the-art methods and algorithms, as well as with the original monarch butterfly optimization implementation was performed for both groups of simulations. Experimental results proved that our proposed method managed to obtain higher classification accuracy than other approaches, the results of which were published in the modern computer science literature.


2021 ◽  
Vol 24 (1) ◽  
Author(s):  
Facundo Manuel Quiroga

Neural networks are currently the state-of-the-art for many tasks.Invariance and same-equivariance are two fundamental properties to characterize how a model reacts to transformation: equivariance is the generalization of both. Equivariance to transformations of the inputs can be necessary properties of the network for certain tasks. Data augmentation and specially designed layers provide a way for these properties to be learned by networks. However, the mechanisms by which networks encode them is not well understood.We propose several transformational measures to quantify the invariance and same-equivariance of individual activations of a network. Analysis of these results can yield insights into the encoding and distribution of invariance in all layers of a network. The measures are simple to understand and efficient to run, and have been implemented in an open-source library. We perform experiments to validate the measures and understand their properties, showing their stability and effectiveness. Afterwards, we use the measures to characterize common network architectures in terms of these properties, using affine transformations. Our results show, for example, that the distribution of invariance across the layers of a network has well a defined structure that is dependent only on the network design and not on the training process.


Author(s):  
T. A. Welton

Various authors have emphasized the spatial information resident in an electron micrograph taken with adequately coherent radiation. In view of the completion of at least one such instrument, this opportunity is taken to summarize the state of the art of processing such micrographs. We use the usual symbols for the aberration coefficients, and supplement these with £ and 6 for the transverse coherence length and the fractional energy spread respectively. He also assume a weak, biologically interesting sample, with principal interest lying in the molecular skeleton remaining after obvious hydrogen loss and other radiation damage has occurred.


Author(s):  
Carl E. Henderson

Over the past few years it has become apparent in our multi-user facility that the computer system and software supplied in 1985 with our CAMECA CAMEBAX-MICRO electron microprobe analyzer has the greatest potential for improvement and updating of any component of the instrument. While the standard CAMECA software running on a DEC PDP-11/23+ computer under the RSX-11M operating system can perform almost any task required of the instrument, the commands are not always intuitive and can be difficult to remember for the casual user (of which our laboratory has many). Given the widespread and growing use of other microcomputers (such as PC’s and Macintoshes) by users of the microprobe, the PDP has become the “oddball” and has also fallen behind the state-of-the-art in terms of processing speed and disk storage capabilities. Upgrade paths within products available from DEC are considered to be too expensive for the benefits received. After using a Macintosh for other tasks in the laboratory, such as instrument use and billing records, word processing, and graphics display, its unique and “friendly” user interface suggested an easier-to-use system for computer control of the electron microprobe automation. Specifically a Macintosh IIx was chosen for its capacity for third-party add-on cards used in instrument control.


2010 ◽  
Vol 20 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Glenn Tellis ◽  
Lori Cimino ◽  
Jennifer Alberti

Abstract The purpose of this article is to provide clinical supervisors with information pertaining to state-of-the-art clinic observation technology. We use a novel video-capture technology, the Landro Play Analyzer, to supervise clinical sessions as well as to train students to improve their clinical skills. We can observe four clinical sessions simultaneously from a central observation center. In addition, speech samples can be analyzed in real-time; saved on a CD, DVD, or flash/jump drive; viewed in slow motion; paused; and analyzed with Microsoft Excel. Procedures for applying the technology for clinical training and supervision will be discussed.


Sign in / Sign up

Export Citation Format

Share Document