The Evolution of Life on Earth and in the Universe

2006 ◽  
pp. 199-372 ◽  
Author(s):  
David Deamer ◽  
John Evans ◽  
Baruch S. Blumberg ◽  
A. M. Carnerup ◽  
A. G. Christy ◽  
...  
Author(s):  
John L. Culliney ◽  
David Jones

For billions of years, competition and cooperation (or attractive forces) oscillated in influence in the evolution of the universe. Consistently, the latter prevailed with a slight edge in that affinitive entities in the universe were free to associate, bond, assemble, facilitate, and cooperate, rise above the leveling action of competition, and generate emergence on progressively higher levels: chemical, biological, and social. This chapter returns to cooperation and examines its constructive power in what might be termed ascendant chemistry—the self-organization of molecules and catalysis that led through pathways of burgeoning complexity to the threshold of biology and the evolution of life on earth. Against the illogic of “creation science,” modern biochemical research illuminates how life arose as an assemblage of complex molecules with strong cooperative tendencies within and among themselves. Carbon’s capacity to build with itself and other elements tremendously variable molecular structures with interlocking functions—most notably of the four basic complex chemicals of life: proteins, carbohydrates, lipids, and nucleic acids (DNA and RNA)—ultimately led to the evolution of living cells.


2021 ◽  
Vol 9 (11) ◽  
pp. 235-251
Author(s):  
Y. V. Subba Rao

              The current hypothesis leads to the panspermia origin of life, which is based on the scientific principle of electromagnetic force interaction with matter. Electromagnetic force (Sunlight) interacts with inorganic chemistry available to us given out by the stars in the universe plausibly triggers the formation of extra-terrestrial biological molecules of proto cells under abiotic conditions, as evidenced by their presence in meteorites.' Proto cells’ might theoretically give rise to living organisms with a manifested soul, allowing 'Ribose' to be formed from ice grains hit by sunlight for RNA and DNA at the same time. The presence of life's building blocks and other important organic chemicals like ribose in meteorites, including some microscopic life forms that aren't native to Earth, may have led to the 'Panspermia Origin of Life' and the 'Evolution of Life on Earth' which is evidenced by the definition of 'Meteorites' in Vedic Scriptures, such as the "Bhagavad Gita" (3000 BC) and "Brihat Samhita" (520 AD) that they are the souls of righteous people who have returned to earth to be reborn.


2019 ◽  
Vol 18 (6) ◽  
pp. 495-501 ◽  
Author(s):  
John-Oliver Engler ◽  
Henrik von Wehrden

AbstractWe use recent results from astrobiology, particularly the A-form of the Drake equation and combine it with data on the evolution of life on Earth to obtain a new assessment of the prevalence of technological species in our Universe. A species is technological if it is, in theory, capable of interstellar communication. We find that between seven and 300 technological species have likely arisen in the Milky Way until today, the current state of which however unknown. Assuming that we are currently alone in our Galaxy, we estimate that we would need to wait for roughly 26 million years for a 50% chance of another technological species to arise. By relating our results to the much-debated Fermi–Hart paradox, we discuss if and to what extent our results may help quantify the chances of humanity to manage the transition to a long-term sustainable path of existence.


2014 ◽  
Vol 57 (5) ◽  
pp. 897-902 ◽  
Author(s):  
AnHuai Lu ◽  
Xin Wang ◽  
Yan Li ◽  
HongRui Ding ◽  
ChangQiu Wang ◽  
...  

Think ◽  
2021 ◽  
Vol 21 (60) ◽  
pp. 33-49
Author(s):  
William Lyons

The author sets out to respond to the student complaint that ‘Philosophy did not answer “the big questions”’, in particular the question ‘What is the meaning of life?’ The response first outlines and evaluates the most common religious answer, that human life is given a meaning by God who created us and informs us that this life is just the pilgrim way to the next eternal life in heaven. He then discusses the response that, from the point of view of post-Darwinian science and the evolution of the universe and all that is in it, human life on Earth must be afforded no more meaning than the meaning we would give to a microscopic planaria or to some creature on another planet in a distant universe. All things including human creatures on Planet Earth just exist for a time and that is that. There is no plan or purpose. In the last sections the author outlines the view that it is we humans ourselves who give meaning to our lives by our choices of values or things that are worth pursuing and through our resulting sense of achievement or the opposite. Nevertheless the question ‘What is the meaning of life?’ can mean quite different things in different contexts, and so merit different if related answers. From one point of view one answer may lie in terms of the love of one human for another.


2016 ◽  
Vol 16 (1) ◽  
pp. 40-59 ◽  
Author(s):  
Claudio Maccone

AbstractIn two recent papers (Maccone 2013, 2014) as well as in the book (Maccone 2012), this author described the Evolution of life on Earth over the last 3.5 billion years as a lognormal stochastic process in the increasing number of living Species. In (Maccone 2012, 2013), the process used was ‘Geometric Brownian Motion’ (GBM), largely used in Financial Mathematics (Black-Sholes models). The GBM mean value, also called ‘the trend’, always is an exponential in time and this fact corresponds to the so-called ‘Malthusian growth’ typical of population genetics. In (Maccone 2014), the author made an important generalization of his theory by extending it to lognormal stochastic processes having an arbitrary trend mL(t), rather than just a simple exponential trend as the GBM have.The author named ‘Evo-SETI’ (Evolution and SETI) his theory inasmuch as it may be used not only to describe the full evolution of life on Earth from RNA to modern human societies, but also the possible evolution of life on exoplanets, thus leading to SETI, the current Search for ExtraTerrestrial Intelligence. In the Evo-SETI Theory, the life of a living being (let it be a cell or an animal or a human or a Civilization of humans or even an ET Civilization) is represented by a b-lognormal, i.e. a lognormal probability density function starting at a precise instant b (‘birth’) then increasing up to a peak-time p, then decreasing to a senility-time s (the descending inflexion point) and then continuing as a straight line down to the death-time d (‘finite b-lognormal’).(1)Having so said, the present paper describes the further mathematical advances made by this author in 2014–2015, and is divided in two halves: Part One, devoted to new mathematical results about the History of Civilizations as b-lognormals, and(2)Part Two, about the applications of the Evo-SETI Theory to the Molecular Clock, well known to evolutionary geneticists since 50 years: the idea is that our EvoEntropy grows linearly in time just as the molecular clock. (a)Summarizing the new results contained in this paper: In Part One, we start from the History Formulae already given in (Maccone 2012, 2013) and improve them by showing that it is possible to determine the b-lognormal not only by assigning its birth, senility and death, but rather by assigning birth, peak and death (BPD Theorem: no assigned senility). This is precisely what usually happens in History, when the life of a VIP is summarized by giving birth time, death time, and the date of the peak of activity in between them, from which the senility may then be calculated (approximately only, not exactly). One might even conceive a b-scalene (triangle) probability density just centred on these three points (b, p, d) and we derive the relevant equations. As for the uniform distribution between birth and death only, that is clearly the minimal description of someone's life, we compare it with both the b-lognormal and the b-scalene by comparing the Shannon Entropy of each, which is the measure of how much information each of them conveys. Finally we prove that the Central Limit Theorem (CLT) of Statistics becomes a new ‘E-Pluribus-Unum’ Theorem of the Evo-SETI Theory, giving formulae by which it is possible to find the b-lognormal of the History of a Civilization C if the lives of its Citizens Ci are known, even if only in the form of birth and death for the vast majority of the Citizens.(b)In Part Two, we firstly prove the crucial Peak-Locus Theorem for any given trend mL(t) and not just for the GBM exponential. Then we show that the resulting Evo-Entropy grows exactly linearly in time if the trend is the exponential GMB trend.(c)In addition, three Appendixes (online) with all the relevant mathematical proofs are attached to this paper. They are written in the Maxima language, and Maxima is a symbolic manipulator that may be downloaded for free from the web.In conclusion, this paper further increases the huge mathematical spectrum of applications of the Evo-SETI Theory to prepare Humans for the first Contact with an Extra-Terrestrial Civilization.


2013 ◽  
Vol 368 (1622) ◽  
pp. 20120253 ◽  
Author(s):  
Nick Lane ◽  
William F. Martin ◽  
John A. Raven ◽  
John F. Allen

Life is the harnessing of chemical energy in such a way that the energy-harnessing device makes a copy of itself. No energy, no evolution. The ‘modern synthesis’ of the past century explained evolution in terms of genes, but this is only part of the story. While the mechanisms of natural selection are correct, and increasingly well understood, they do little to explain the actual trajectories taken by life on Earth. From a cosmic perspective—what is the probability of life elsewhere in the Universe, and what are its probable traits?—a gene-based view of evolution says almost nothing. Irresistible geological and environmental changes affected eukaryotes and prokaryotes in very different ways, ones that do not relate to specific genes or niches. Questions such as the early emergence of life, the morphological and genomic constraints on prokaryotes, the singular origin of eukaryotes, and the unique and perplexing traits shared by all eukaryotes but not found in any prokaryote, are instead illuminated by bioenergetics. If nothing in biology makes sense except in the light of evolution, nothing in evolution makes sense except in the light of energetics. This Special Issue of Philosophical Transactions examines the interplay between energy transduction and genome function in the major transitions of evolution, with implications ranging from planetary habitability to human health. We hope that these papers will contribute to a new evolutionary synthesis of energetics and genetics.


2012 ◽  
Vol 11 (4) ◽  
pp. 345-350 ◽  
Author(s):  
Marcelo Gleiser

AbstractThe history of life on Earth and in other potential life-bearing planetary platforms is deeply linked to the history of the Universe. Since life, as we know, relies on chemical elements forged in dying heavy stars, the Universe needs to be old enough for stars to form and evolve. The current cosmological theory indicates that the Universe is 13.7 ± 0.13 billion years old and that the first stars formed hundreds of millions of years after the Big Bang. At least some stars formed with stable planetary systems wherein a set of biochemical reactions leading to life could have taken place. In this paper, I argue that we can divide cosmological history into four ages, from the Big Bang to intelligent life. The physical age describes the origin of the Universe, of matter, of cosmic nucleosynthesis, as well as the formation of the first stars and Galaxies. The chemical age began when heavy stars provided the raw ingredients for life through stellar nucleosynthesis and describes how heavier chemical elements collected in nascent planets and Moons gave rise to prebiotic biomolecules. The biological age describes the origin of early life, its evolution through Darwinian natural selection and the emergence of complex multicellular life forms. Finally, the cognitive age describes how complex life evolved into intelligent life capable of self-awareness and of developing technology through the directed manipulation of energy and materials. I conclude discussing whether we are the rule or the exception.


Sign in / Sign up

Export Citation Format

Share Document