scholarly journals Energy, genes and evolution: introduction to an evolutionary synthesis

2013 ◽  
Vol 368 (1622) ◽  
pp. 20120253 ◽  
Author(s):  
Nick Lane ◽  
William F. Martin ◽  
John A. Raven ◽  
John F. Allen

Life is the harnessing of chemical energy in such a way that the energy-harnessing device makes a copy of itself. No energy, no evolution. The ‘modern synthesis’ of the past century explained evolution in terms of genes, but this is only part of the story. While the mechanisms of natural selection are correct, and increasingly well understood, they do little to explain the actual trajectories taken by life on Earth. From a cosmic perspective—what is the probability of life elsewhere in the Universe, and what are its probable traits?—a gene-based view of evolution says almost nothing. Irresistible geological and environmental changes affected eukaryotes and prokaryotes in very different ways, ones that do not relate to specific genes or niches. Questions such as the early emergence of life, the morphological and genomic constraints on prokaryotes, the singular origin of eukaryotes, and the unique and perplexing traits shared by all eukaryotes but not found in any prokaryote, are instead illuminated by bioenergetics. If nothing in biology makes sense except in the light of evolution, nothing in evolution makes sense except in the light of energetics. This Special Issue of Philosophical Transactions examines the interplay between energy transduction and genome function in the major transitions of evolution, with implications ranging from planetary habitability to human health. We hope that these papers will contribute to a new evolutionary synthesis of energetics and genetics.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Brooke Thompson ◽  
Kayla Burt ◽  
Andrew Lee ◽  
Kyle Lingard ◽  
Sarah E. Maurer

AbstractWater has many roles in the context of life on Earth, however throughout the universe, other liquids may be able to support the emergence of life. We looked at the ability of amino acids, peptides, a depsipeptide, and proteins to partition into a non-polar decanol phase, with and without the addition of a phase transfer agent. Partitioning evaluated using UV detection, or with HPLC coupled to either charged aerosol detection or ESI-MS. For amino acids and short peptides, phase transfer agents were used to move the biomolecules to the decanol phase, and this transfer was pH dependent. For larger molecules, phase transfer agents did not seem to affect the transfer. Both the depsipetide, valinomycin, and the protein Taq DNA polymerase had solubility in the decanol phase. Additionally, valinomycin appeared to retain its biological ability to bind to potassium ions. These results show that most terrestrial biological molecules are not compatible with non-polar solvents, but it is possible to find and perhaps evolve polymers that are functional in such phases.


2014 ◽  
Vol 61 (2) ◽  
Author(s):  
Carlos Polanco ◽  
Thomas Buhse ◽  
José Lino Samaniego ◽  
Jorge Alberto Castañón González ◽  
Miguel Arias Estrada

In accordance with the second law of thermodynamics, the Universe as a whole tends to higher entropy. However, the sequence of far-from-equilibrium events that led to the emergence of life on Earth could have imposed order and complexity during the course of chemical reactions in the so-called primordial soup of life. Hence, we may expect to find characteristic profiles or biases in the prebiotic product mixtures, as for instance among the first amino acids. Seeking to shed light on this hypothesis, we have designed a high performance computer program that simulates the spontaneous formation of the amino acid monomers in closed environments. The program was designed in reference to a prebiotic scenario proposed by Sydney W. Fox. The amino acid abundances and their polarities as the two principal biases were also taken into consideration. We regarded the computational model as exhaustive since 200,000 amino acid dimers were formed by simulation, subsequently expressed in a vector and compared with the corresponding amino acid dimers that were experimentally obtained by Fox. We found a very high similarity between the experimental results and our simulations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexander I. Novichkov ◽  
Anton I. Hanopolskyi ◽  
Xiaoming Miao ◽  
Linda J. W. Shimon ◽  
Yael Diskin-Posner ◽  
...  

AbstractAutocatalytic and oscillatory networks of organic reactions are important for designing life-inspired materials and for better understanding the emergence of life on Earth; however, the diversity of the chemistries of these reactions is limited. In this work, we present the thiol-assisted formation of guanidines, which has a mechanism analogous to that of native chemical ligation. Using this reaction, we designed autocatalytic and oscillatory reaction networks that form substituted guanidines from thiouronium salts. The thiouronium salt-based oscillator show good stability of oscillations within a broad range of experimental conditions. By using nitrile-containing starting materials, we constructed an oscillator where the concentration of a bicyclic derivative of dihydropyrimidine oscillates. Moreover, the mixed thioester and thiouronium salt-based oscillator show unique responsiveness to chemical cues. The reactions developed in this work expand our toolbox for designing out-of-equilibrium chemical systems and link autocatalytic and oscillatory chemistry to the synthesis of guanidinium derivatives and the products of their transformations including analogs of nucleobases.


Think ◽  
2021 ◽  
Vol 21 (60) ◽  
pp. 33-49
Author(s):  
William Lyons

The author sets out to respond to the student complaint that ‘Philosophy did not answer “the big questions”’, in particular the question ‘What is the meaning of life?’ The response first outlines and evaluates the most common religious answer, that human life is given a meaning by God who created us and informs us that this life is just the pilgrim way to the next eternal life in heaven. He then discusses the response that, from the point of view of post-Darwinian science and the evolution of the universe and all that is in it, human life on Earth must be afforded no more meaning than the meaning we would give to a microscopic planaria or to some creature on another planet in a distant universe. All things including human creatures on Planet Earth just exist for a time and that is that. There is no plan or purpose. In the last sections the author outlines the view that it is we humans ourselves who give meaning to our lives by our choices of values or things that are worth pursuing and through our resulting sense of achievement or the opposite. Nevertheless the question ‘What is the meaning of life?’ can mean quite different things in different contexts, and so merit different if related answers. From one point of view one answer may lie in terms of the love of one human for another.


2019 ◽  
Vol 15 (S350) ◽  
pp. 216-219
Author(s):  
N. F. W. Ligterink ◽  
J. Terwisscha van Scheltinga ◽  
V. Kofman ◽  
V. Taquet ◽  
S. Cazaux ◽  
...  

AbstractThe emergence of life on Earth may have its origin in organic molecules formed in the interstellar medium. Molecules with amide and isocyanate groups resemble structures found in peptides and nucleobases and are necessary for their formation. Their formation is expected to take place in the solid state, on icy dust grains, and is studied here by far-UV irradiating a CH4:HNCO mixture at 20 K in the laboratory. Reaction products are detected by means of infrared spectroscopy and temperature programmed desorption - mass spectrometry. Various simple amides and isocyanates are formed, showing the importance of ice chemistry for their interstellar formation. Constrained by experimental conditions, a reaction network is derived, showing possible formation pathways of these species under interstellar conditions.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Alexander P. Sobolev

AbstractThe gravitational equations were derived in general relativity (GR) using the assumption of their covariance relative to arbitrary transformations of coordinates. It has been repeatedly expressed an opinion over the past century that such equality of all coordinate systems may not correspond to reality. Nevertheless, no actual verification of the necessity of this assumption has been made to date. The paper proposes a theory of gravity with a constraint, the degenerate variants of which are general relativity (GR) and the unimodular theory of gravity. This constraint is interpreted from a physical point of view as a sufficient condition for the adiabaticity of the process of the evolution of the space–time metric. The original equations of the theory of gravity with the constraint are formulated. On this basis, a unified model of the evolution of the modern, early, and very early Universe is constructed that is consistent with the observational astronomical data but does not require the hypotheses of the existence of dark energy, dark matter or inflatons. It is claimed that: physical time is anisotropic, the gravitational field is the main source of energy of the Universe, the maximum global energy density in the Universe was 64 orders of magnitude smaller the Planckian one, and the entropy density is 18 orders of magnitude higher the value predicted by GR. The value of the relative density of neutrinos at the present time and the maximum temperature of matter in the early Universe are calculated. The wave equation of the gravitational field is formulated, its solution is found, and the nonstationary wave function of the very early Universe is constructed. It is shown that the birth of the Universe was random.


2012 ◽  
Vol 11 (4) ◽  
pp. 345-350 ◽  
Author(s):  
Marcelo Gleiser

AbstractThe history of life on Earth and in other potential life-bearing planetary platforms is deeply linked to the history of the Universe. Since life, as we know, relies on chemical elements forged in dying heavy stars, the Universe needs to be old enough for stars to form and evolve. The current cosmological theory indicates that the Universe is 13.7 ± 0.13 billion years old and that the first stars formed hundreds of millions of years after the Big Bang. At least some stars formed with stable planetary systems wherein a set of biochemical reactions leading to life could have taken place. In this paper, I argue that we can divide cosmological history into four ages, from the Big Bang to intelligent life. The physical age describes the origin of the Universe, of matter, of cosmic nucleosynthesis, as well as the formation of the first stars and Galaxies. The chemical age began when heavy stars provided the raw ingredients for life through stellar nucleosynthesis and describes how heavier chemical elements collected in nascent planets and Moons gave rise to prebiotic biomolecules. The biological age describes the origin of early life, its evolution through Darwinian natural selection and the emergence of complex multicellular life forms. Finally, the cognitive age describes how complex life evolved into intelligent life capable of self-awareness and of developing technology through the directed manipulation of energy and materials. I conclude discussing whether we are the rule or the exception.


2018 ◽  
Vol 77 (3) ◽  
pp. 223-229 ◽  
Author(s):  
Randy J. Nelson ◽  
Souhad Chbeir

Life on earth has evolved during the past several billion years under relatively bright days and dark night conditions. The wide-spread adoption of electric lights during the past century exposed animals, both human and non-human, to significant light at night for the first time in their evolutionary history. Endogenous circadian clocks depend on light to entrain to the external daily environment and seasonal rhythms depend on clear nightly melatonin signals to assess time of year. Thus, light at night can derange temporal adaptations. Indeed, disruption of naturally evolved light–dark cycles results in several physiological and behavioural changes with potentially serious implications for physiology, behaviour and mood. In this review, data from night-shift workers on their elevated risk for metabolic disorders, as well as data from animal studies will be discussed. Night-shift workers are predisposed to obesity and dysregulated metabolism that may result from disrupted circadian rhythms. Although studies in human subjects are correlative, animal studies have revealed several mechanisms through which light at night may exert its effects on metabolism by disrupting circadian rhythms that are associated with inflammation, both in the brain and in the periphery. Disruption of the typical timing of food intake is a key effect of light at night and subsequent metabolic dysregulation. Strategies to avoid the effects of light at night on body mass dysregulation should be pursued.


2021 ◽  
Vol 1 (2) ◽  
pp. 80-87
Author(s):  
Toji Omonovich Norov ◽  

The universe, the space that make up their basis planets in it, their creation, the main essence of their creation, form, composition, meaning, movements, interactions, their influence on human life and activities, the role of man in the universe and in life on Earth, life, the criteria of activity and processes occurring in time and space have long been of interest to humanity. One of the main problems in the history of philosophy is the question of space and time. This problem was defined in different ways in the great schools of thought by thinkers of different periods. One of these great thinkers is Alisher Navoi. Navoi's works, along with other socio-philosophical themes, uniquely express and analyze the problems of the firmament and time. Its main feature is that it is based on the divine (pantheistic) religion, Islam, its holy book, the Koran and other theological sources, as well as on the secrets of nature and the Universe, the main miracle of Allah - human intelligence, the power of enlightenment, they are the key revealing all these secrets.


Leonardo ◽  
2021 ◽  
Vol 54 (1) ◽  
pp. 71-78
Author(s):  
Elena Gubanova

In this article, the author presents some of her artworks in which she created artistic images and interpretations of time, space and light that define human life on Earth. In her multimedia installations of the last 10 years, her interest in the scientific study of the universe has been interwoven with her experience as the daughter of an astronomer. The author and her husband collaborate to express their thoughts on science and philosophy through a combination of art and engineering solutions and technologies.


Sign in / Sign up

Export Citation Format

Share Document