EFFECT OF THE TEST SET-UP AND CURING CONDITIONS ON FRACTURE BEHAVIOR OF STRAIN HARDENING CEMENT-BASED COMPOSITES (SHCC)

Author(s):  
V. Mechtcherine ◽  
J. Schulze
2016 ◽  
Vol 715 ◽  
pp. 101-106
Author(s):  
Zoltan Major ◽  
Matei Miron ◽  
Imre Kallai

The characterization of the loading rate dependence of the fracture behavior of polymers is of prime theoretical and practical interest for supporting demanding engineering applications. To gain more insight into the high rate fracture behavior of polymers, fracture tests were performed under tensile loading conditions up to 12 m/s loading rate using a neat model polymer (PVC grey) in this study. A conventional single actuator test set-up for compact tension C(T) specimens was developed based on the previous experience of the authors and implemented on a new high rate servohydraulic testing machine. In addition, a novel double action test set-up was developed by applying two twin actuators and implemented in a rigid horizontal test frame. The conventional load and force measurement was extended by instrumented test specimens and by a high speed optical strain analysis system for both set-ups. Force based fracture toughness values using the peak load values, KIcPL and displacement based values using the critical crack opening displacement (CTOD) KICCTOD were determined up to a loading rate of 10 m/s. While the KIcPL values decreased up to a loading rate 103 MPam1/2s-1 an increase with a high data scatter was observed above them. Corresponding to the CTOD values the calculated KICCTOD values revealed a slight decrease and moderate data scatter up to the maximal loading rate.


2021 ◽  
Vol 16 ◽  
pp. 155892502110203
Author(s):  
Mohammad Iqbal Khan ◽  
Galal Fares ◽  
Yassir Mohammed Abbas ◽  
Wasim Abbass ◽  
Sardar Umer Sial

Strain-hardening cement-based composites (SHCC) have recently been developed as repair materials for the improvement of crack control and strength of flexural members. This work focuses on strengthening and flexural enhancement using SHCC layer in tensile regions of flexural members under three different curing conditions. The curing conditions simulate the effect of different environmental conditions prevailing in the central and coastal regions of the Arabian Peninsula on the properties of SHCC as a retrofitting material. In this investigation, beams with SHCC layer were compared to control beams. The beams with SHCC layer of 50-mm thickness were cast. The results revealed that the flexural behavior and the load-carrying capacity of the normal concrete beam specimens under hot and dry environmental conditions were significantly reduced, lowering the ductility of the section. However, compressive strength is comparatively unaffected. Similarly, the hot curing conditions have also led to a notable reduction in the loading capacity of the beam with SHCC layer with a slight effect on its stiffness. On the other hand, steam-curing conditions have shown improvement in load-carrying capacity and a reduction in section ductility of the beam with SHCC layer. It was found that the structural unit retrofitted with SHCC layer was a curing-regime dependent as the tensile and strain-hardening properties of SHCC are highly sensitive to the alteration in the cement hydration process. A normal curing regime was found effective and satisfying the practical, cost, and performance requirements. Accordingly, a normal curing regime could be implemented to retrofit reinforced concrete (RC) beams with SHCC layers as recommended in the study.


Author(s):  
Y K Ahn ◽  
J-Y Ha ◽  
Y-H Kim ◽  
B-S Yang ◽  
M Ahmadian ◽  
...  

This paper presents an analytical and experimental analysis of the characteristics of a squeeze-type magnetorheological (MR) mount which can be used for various vibration isolation areas. The concept of the squeeze-type mount and details of the design of a squeeze-type MR mount are discussed. These are followed by a detailed description of the test set-up for evaluating the dynamic behaviour of the mount. A series of tests was conducted on the prototype mount built for this study, in order to characterize the changes occurring as a result of changing electrical current to the mount. The results of this study show that increasing electrical current to the mount, which increases the yield stress of the MR fluid, will result in an increase in both stiffness and damping of the mount. The results also show that the mount hysteresis increases with increase in current to the MR fluid, causing changes in stiffness and damping at different input frequencies.


Holzforschung ◽  
2015 ◽  
Vol 69 (4) ◽  
pp. 457-462 ◽  
Author(s):  
Eva Höllbacher ◽  
Cornelia Rieder-Gradinger ◽  
Daniel Strateva ◽  
Ewald Srebotnik

Abstract A large-scale test set-up was designed to evaluate the volatile organic compound (VOC) emissions of building materials in a real room situation but under laboratory conditions. Two model rooms (ModR) with a volume of 30 m3 each were constructed of the wood-based building materials X-lam and OSB, respectively. Temperature and relative humidity (RH) inside the ModR were kept in a range of 21°C–25°C and 45%–55% RH. VOCs were collected at 13 different times over a period of 23 weeks, and the total VOC (TVOC) concentration was calculated from GC/MS data. Results were quantified as toluene equivalents (TE). In the X-lam-ModR, the TVOC concentration decreased by 64% over the whole measurement period from 115 to 41 μg m-3 TE. Terpenes were the most abundant substance group and accounted, on average, for 80% of the TVOC concentration. In the OSB-ModR, the TVOC concentration decreased by 72% from 443 to 124 μg m-3 TE. Aldehydes showed the highest concentrations, accounting, on average, for 52% of the TVOC, while 38% were terpenes. The results show that this type of test provides realistic data for the praxis.


2013 ◽  
Vol 712-715 ◽  
pp. 1235-1240
Author(s):  
Pei Wu ◽  
Yong An Zhang ◽  
Chuan Zhong Xuan ◽  
Yan Hua Ma

The dynamic mechanical responses of resistance welding machine,which is mainly governed by the mechanical parameters of the machine, is very important to the weld quality especially in projection welding when collapse or deformation of work piece occurs. In this paper, a mathematical model for characterizing the dynamic mechanical response of resistance welding machine and a special test set-up called breaking test set-up have been developed. Based on the model and the test results, the mechanical parameters of the machine were identified, including the equivalent mass, the damping coefficient, and the stiffness for both electrode systems.


Sign in / Sign up

Export Citation Format

Share Document