2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Qingdong Guan

Inflammatory bowel disease (IBD) is a chronic and life-threating inflammatory disease of gastroenteric tissue characterized by episodes of intestinal inflammation. The pathogenesis of IBD is complex. Recent studies have greatly improved our knowledge of the pathophysiology of IBD, leading to great advances in the treatment as well as diagnosis of IBD. In this review, we have systemically reviewed the pathogenesis of IBD and highlighted recent advances in host genetic factors, gut microbiota, and environmental factors and, especially, in abnormal innate and adaptive immune responses and their interactions, which may hold the keys to identify novel predictive or prognostic biomarkers and develop new therapies.


Author(s):  
Juan Hernandez ◽  
Elodie Rouillé ◽  
Florian Chocteau ◽  
Marie Allard ◽  
Karine Haurogné ◽  
...  

Abstract Background The incidence of inflammatory bowel disease (IBD) is increasing worldwide, emphasizing the need of relevant models, as dogs spontaneously affected by IBD may be, for better knowledge of the disease’s physiopathology. Methods We studied 22 client-owned dogs suffering from IBD without protein loss and 14 control dogs. Biopsies were obtained from the duodenum, ileum, and colon. Inflammatory grade was assessed by histopathology, immunohistochemistry, and chemokine analysis. The expression of Toll-like receptors (TLR) in mucosa was immunohistochemically evaluated. Antibody levels against bacterial ligands (lipopolysaccharide [LPS] and flagellin) were measured in sera using enzyme-linked immunoassay. Results Dogs with IBD showed low to severe clinical disease. Histopathologically, the gut of dogs with IBD did not exhibit significant alterations compared with controls except in the colon. The number of CD3+ T lymphocytes was decreased in the ileum and colon of dogs with IBD compared with controls, whereas the numbers of Foxp3+, CD20+, and CD204+ cells were similar in the 2 groups. Three chemokines, but no cytokines, were detected at the protein level in the mucosa, and the disease poorly affected their tissue concentrations. Dogs with IBD exhibited higher serum reactivity against LPS and flagellin than controls but similar immunoreactivity against the receptors TLR4 and TLR5. In addition, TLR2 and TLR9 showed similar expression patterns in both groups of dogs. Conclusions Our data described dysregulated immune responses in dogs affected by IBD without protein loss. Despite fairly homogeneous dog cohorts, we were still faced with interindividual variability, and new studies with larger cohorts are needed to validate the dog as a model.


2012 ◽  
Vol 82 (3) ◽  
pp. 200-208 ◽  
Author(s):  
Emilio Jirillo ◽  
Felicita Jirillo ◽  
Thea Magrone

Pre-, pro-, and symbiotics are endowed with a broad spectrum of beneficial effects when administered to animals and humans. A series of experimental and clinical studies have clearly demonstrated that prebiotics, probiotics, or their combination are very effective in attenuating chronic inflammatory conditions such as inflammatory bowel disease or obesity. In addition, these natural products are able to prevent or arrest tumor development, acting on the intestinal microbiota as well as potentiating the immune response.Aging is characterized by a dramatic reduction of both innate and adaptive immune responses, the so-called immunosenescence. This leads to an increased incidence of infections, autoimmune diseases, and cancer in the elderly. Pre-, pro-, and symbiotic administration has been shown to ameliorate the immune response in aging. In particular, administration of a symbiotic to free-living elderly was able to potentiate the release of interleukin-8, thus increasing neutrophils in the host, perhaps explaining the reduced frequency of winter infections in the elderly.


2016 ◽  
Vol 22 (7) ◽  
pp. 1575-1586 ◽  
Author(s):  
Sylwia Smolinska ◽  
David Groeger ◽  
Noelia Rodriguez Perez ◽  
Elisa Schiavi ◽  
Ruth Ferstl ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Pierre Lapaquette ◽  
Jean Guzzo ◽  
Lionel Bretillon ◽  
Marie-Agnès Bringer

Autophagy is an intracellular catabolic pathway essential for the recycling of proteins and larger substrates such as aggregates, apoptotic corpses, or long-lived and superfluous organelles whose accumulation could be toxic for cells. Because of its unique feature to engulf part of cytoplasm in double-membrane cup-shaped structures, which further fuses with lysosomes, autophagy is also involved in the elimination of host cell invaders and takes an active part of the innate and adaptive immune response. Its pivotal role in maintenance of the inflammatory balance makes dysfunctions of the autophagy process having important pathological consequences. Indeed, defects in autophagy are associated with a wide range of human diseases including metabolic disorders (diabetes and obesity), inflammatory bowel disease (IBD), and cancer. In this review, we will focus on interrelations that exist between inflammation and autophagy. We will discuss in particular how mediators of inflammation can regulate autophagy activity and, conversely, how autophagy shapes the inflammatory response. Impact of genetic polymorphisms in autophagy-related gene on inflammatory bowel disease will be also discussed.


2018 ◽  
Vol 154 (6) ◽  
pp. S-860-S-861
Author(s):  
Graham J. Britton ◽  
Eduardo J. Contijoch ◽  
Ilaria Mogno ◽  
Olivia H. Vennaro ◽  
Sean R. Llewellyn ◽  
...  

2021 ◽  
Author(s):  
◽  
Kerry Hilligan

<p>Antigen presenting cells (APC) including dendritic cells (DC) play a key role in the initiation and direction of adaptive immune responses. Acting as sentinels in the tissue, DC sample antigen and traffic to the local lymph node where they present antigen to naïve T cells. The signals DC provide to naïve T cells determines the functional fate of the T cell and therefore, the type of immune response generated. At mucosal sites, such as the intestine, immune responses need to be carefully regulated due to the high antigenic load. For this reason, intestinal immune cells are highly specialised to prevent immune activation to innocuous antigens while still holding the capacity to induce potent responses to pathogenic microbes and helminths. Oral administration of antigen is associated with tolerance and the generation of FoxP3+ regulatory T cells (Tregs). Specialised lamina propria (LP) resident APC are required for the initiation of Treg differentiation in the mesenteric lymph nodes (MLN) through production of chemical mediators such as retinoic acid (RA). Ablation of these populations or restricted trafficking prevents the development of Tregs in mouse models thus supporting the essential role of APC in maintaining intestinal homeostasis. During infection, APC promote the induction of adaptive immune responses which neutralise threats. However, the APC subsets involved in this are not well defined. Pathologies such as food allergy and inflammatory bowel disease are thought to arise due to the development of aberrant immune responses. Food allergy can be modelled in mice using the mucosal adjuvant cholera toxin (CT) which has been shown to drive immunity to co-delivered antigens and is associated with the generation of IL-4 producing T helper 2 cells. Understanding the APC subsets involved in the initiation of intestinal immune responses could help in the development of targeted therapies for inflammatory bowel conditions. In this thesis, I show that oral administration of CT is followed by the appearance of a novel phenotype of DC in the intestinal LP and MLN. These DC differ functionally from DC at steady-state and may contribute to the generation of IL-4 producing T cells observed in the LP, MLN and spleen following oral administration of CT.</p>


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Cui Zhang ◽  
Weigang Shu ◽  
Guangxi Zhou ◽  
Jian Lin ◽  
Feifei Chu ◽  
...  

Neutrophils have been found to play an important role in the pathogenesis of inflammatory bowel disease (IBD), and anti-TNF-α mAb (i.e., infliximab) therapy is demonstrated to be effective in the induction of clinical remission and mucosal healing in these patients. However, how anti-TNF-α mAb regulates the functions of neutrophils is still unknown. Herein, we found that anti-TNF-α therapy significantly downregulated infiltration of neutrophils in inflamed mucosa of IBD patients. Importantly, anti-TNF-α mAb could inhibit neutrophils to produce proinflammatory mediators, such as ROS, calprotectin, IL-8, IL-6, and TNF-α. These data indicate that TNF-α plays a critical role in the induction of mucosal inflammatory response, and that blockade of TNF-α modulates intestinal homeostasis through balancing immune responses of neutrophils.


Sign in / Sign up

Export Citation Format

Share Document