Effect of Aluminum Foam and Foam Density on the Energy Absorption Capacity of 3D “S” Space Frames

Author(s):  
Roselita Fragoudakis ◽  
Anil Saigal
Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 249
Author(s):  
Przemysław Rumianek ◽  
Tomasz Dobosz ◽  
Radosław Nowak ◽  
Piotr Dziewit ◽  
Andrzej Aromiński

Closed-cell expanded polypropylene (EPP) foam is commonly used in car bumpers for the purpose of absorbing energy impacts. Characterization of the foam’s mechanical properties at varying strain rates is essential for selecting the proper material used as a protective structure in dynamic loading application. The aim of the study was to investigate the influence of loading strain rate, material density, and microstructure on compressive strength and energy absorption capacity for closed-cell polymeric foams. We performed quasi-static compressive strength tests with strain rates in the range of 0.2 to 25 mm/s, using a hydraulically controlled material testing system (MTS) for different foam densities in the range 20 g/dm3 to 220 g/dm3. The above tests were carried out as numerical simulation using ABAQUS software. The verification of the properties was carried out on the basis of experimental tests and simulations performed using the finite element method. The method of modelling the structure of the tested sample has an impact on the stress values. Experimental tests were performed for various loads and at various initial temperatures of the tested sample. We found that increasing both the strain rate of loading and foam density raised the compressive strength and energy absorption capacity. Increasing the ambient and tested sample temperature caused a decrease in compressive strength and energy absorption capacity. For the same foam density, differences in foam microstructures were causing differences in strength and energy absorption capacity when testing at the same loading strain rate. To sum up, tuning the microstructure of foams could be used to acquire desired global materials properties. Precise material description extends the possibility of using EPP foams in various applications.


2018 ◽  
Vol 22 (4) ◽  
pp. 929-947 ◽  
Author(s):  
LL Yan ◽  
B Yu ◽  
B Han ◽  
QC Zhang ◽  
TJ Lu ◽  
...  

In this study, a closed-cell aluminum foam was filled into the interspaces of a sandwich panel with corrugated cores to form a composite structure. The novel structure is expected to have enhanced foam-filled cores with high specific strength and energy absorption capacity. An out-of-plane compressive load under low-velocity impact was experimentally and numerically carried out on both the empty and foam-filled sandwich panels as well as on the aluminum foam. It is found that the empty corrugated sandwich panel has poor energy absorption capacity due to the core member buckling compared to that of the aluminum foam. However, by the filling of the aluminum foam, the impact load resistance of the corrugated panel was increased dramatically. The loading-time response of the foam-filled panel performs a plateau region like the aluminum foam, which has been proved to be an excellent energy absorption material. Numerical results demonstrated that the aluminum foam filling can decrease the corrugated core member defects sensitivity and increase its stability dramatically. The plastic energy dissipation of the core member for the foam-filled panel is much higher than that of the empty one due to the reduced buckling wavelength caused by the aluminum foam filling.


2020 ◽  
Vol 1 ◽  
pp. 927-936
Author(s):  
P. Hommel ◽  
D. Roth ◽  
H. Binz

AbstractAluminum foam sandwich (AFS) is an innovative sandwich material for designing lighter products and has many advantages such as high stiffness and high mechanical-energy absorption capacity. Although AFS is ready for series production, the number of use cases is low. A survey was carried out in order to identify the obstacles in the application of aluminum foam sandwich. This paper presents the results of the survey, derives the demand for a support method for designing with aluminum foam sandwich and shows various support options to simplify the application of the material.


2018 ◽  
Vol 238 ◽  
pp. 05006
Author(s):  
Zhongfang Li ◽  
Siyi Yang ◽  
Haile Xu ◽  
Yukun An

Spent fuel transport cask is a significant carrier of spent fuel transport. The main function of impact limiters installed at both ends of the container is to absorb energy and limit overload to ensure the integrity of the structure. The quasi-static compression process of aluminum foam was simulated on the platform of ANSYS Workbench. Foam aluminum was prepared by melt foaming method and quasi static compression test was carried out. The experimental results show that the deformation process of aluminum foam is basically the same as that of experiment, and the aluminum foam has good compressive and energy absorption properties. The yield stress (σys) and plateau stress (σpl) of aluminum foam with density of 0.64 g/cm3 can reach 8.26 MPa and 11.11 MPa respectively, and the energy absorption capacity (WEA) and unit energy absorption capacity (WSEA) can reach 6.31 x 103KJ/m3 and 9.87 KJ/Kg respectively, and the difference between the foam with density of 0.61g/cm3 and its various properties is very small. It can be concluded that the aluminum foam in a certain density range has roughly the same performance, and it also reflected the stability of aluminum foam's performance. Additionally, aluminum foam is an isotropic material, which can overcome directional limitation when used as shock absorber filler material for spent fuel transport cask.


2011 ◽  
Vol 675-677 ◽  
pp. 601-605
Author(s):  
Qing Chun Wang ◽  
Hao Long Niu ◽  
Guo Quan Wang ◽  
Yu Xin Wang

Quasi-static and dynamic axial crushing tests were carried out to investigate the energy absorption capacity of aluminum foam with several densities. First, aluminum foam samples with three densities were crushed quasi-statically to study their compression characteristics, the stress strain relationship curves and energy absorption capacities were achieved from the test results; then dynamic crushing tests were carried out to check the crushing behaviors of the corresponding samples; finally, the energy absorption capacities of tested samples were compared. According to the tests results, all the aluminum foam samples showed very good isotropy and very high mass specific energy absorption capacities. For the crushing tests, the dynamic crushing behaviors were very similar to the static ones, which meant aluminum foam was insensitive to the crash velocity tested.


2011 ◽  
Vol 287-290 ◽  
pp. 401-404
Author(s):  
Ming Si Qi ◽  
Wen Dong Zhang ◽  
Wei Yang ◽  
Hong Mei Wang ◽  
Bo Li

The paper researched stress and strain of aluminum foam, polyurethane and aluminum foam-polyurethane composite via Ansys software, researched energy absorption capacity of the three material via energy absorption curve method, and researched energy absorption capacity of the aluminum foam-polyurethane composite under different shock and different thickness. The research results are obvious: under the same material parameter and 7800gn shock conditions the energy absorption of the aluminum foam-polyurethane composite is better than the monomer of the aluminum foam and the polyurethane. Under the same shock conditions, the thicker the composite is, the more energy it absorbs. Aluminum foam-polyurethane composite can plays cushioning and energy absorption roles when the acceleration speed reaches 7800gn


Author(s):  
H Geramizadeh ◽  
S Dariushi ◽  
S Jedari Salami

The current study focuses on designing the optimal three-dimensional printed sandwich structures. The main goal is to improve the energy absorption capacity of the out-of-plane honeycomb sandwich beam. The novel Beta VI and Alpha VI were designed in order to achieve this aim. In the Beta VI, the connecting curves (splines) were used instead of the four diagonal walls, while the two vertical walls remained unchanged. The Alpha VI is a step forward on the Beta VI, which was promoted by filleting all angles among the vertical walls, created arcs, and face sheets. The two offered sandwich structures have not hitherto been provided in the literature. All models were designed and simulated by the CATIA and ABAQUS, respectively. The three-dimensional printer fabricated the samples by fused deposition modeling technique. The material properties were determined under tensile, compression, and three-point bending tests. The results are carried out by two methods based on experimental tests and finite element analyses that confirmed each other. The achievements provide novel insights into the determination of the adequate number of unit cells and demonstrate the energy absorption capacity of the Beta VI and Alpha VI are 23.7% and 53.9%, respectively, higher than the out-of-plane honeycomb sandwich structures.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
S. Talebi ◽  
R. Hedayati ◽  
M. Sadighi

AbstractClosed-cell metal foams are cellular solids that show unique properties such as high strength to weight ratio, high energy absorption capacity, and low thermal conductivity. Due to being computation and cost effective, modeling the behavior of closed-cell foams using regular unit cells has attracted a lot of attention in this regard. Recent developments in additive manufacturing techniques which have made the production of rationally designed porous structures feasible has also contributed to recent increasing interest in studying the mechanical behavior of regular lattice structures. In this study, five different topologies namely Kelvin, Weaire–Phelan, rhombicuboctahedron, octahedral, and truncated cube are considered for constructing lattice structures. The effects of foam density and impact velocity on the stress–strain curves, first peak stress, and energy absorption capacity are investigated. The results showed that unit cell topology has a very significant effect on the stiffness, first peak stress, failure mode, and energy absorption capacity. Among all the unit cell types, the Kelvin unit cell demonstrated the most similar behavior to experimental test results. The Weaire–Phelan unit cell, while showing promising results in low and medium densities, demonstrated unstable behavior at high impact velocity. The lattice structures with high fractions of vertical walls (truncated cube and rhombicuboctahedron) showed higher stiffness and first peak stress values as compared to lattice structures with high ratio of oblique walls (Weaire–Phelan and Kelvin). However, as for the energy absorption capacity, other factors were important. The lattice structures with high cell wall surface area had higher energy absorption capacities as compared to lattice structures with low surface area. The results of this study are not only beneficial in determining the proper unit cell type in numerical modeling of dynamic behavior of closed-cell foams, but they are also advantageous in studying the dynamic behavior of additively manufactured lattice structures with different topologies.


Sign in / Sign up

Export Citation Format

Share Document