Relations of phytoplankton in situ primary production, chlorophyll concentration and underwater irradiance in turbid lakes

Author(s):  
Helgi Arst ◽  
Tiina Nõges ◽  
Peeter Nõges ◽  
Birgot Paavel
Hydrobiologia ◽  
2008 ◽  
Vol 599 (1) ◽  
pp. 169-176 ◽  
Author(s):  
Helgi Arst ◽  
Tiina Nõges ◽  
Peeter Nõges ◽  
Birgot Paavel

Ocean Science ◽  
2013 ◽  
Vol 9 (2) ◽  
pp. 431-445 ◽  
Author(s):  
A. Cherkasheva ◽  
E.-M. Nöthig ◽  
E. Bauerfeind ◽  
C. Melsheimer ◽  
A. Bracher

Abstract. Current estimates of global marine primary production range over a factor of two. Improving these estimates requires an accurate knowledge of the chlorophyll vertical profiles, since they are the basis for most primary production models. At high latitudes, the uncertainty in primary production estimates is larger than globally, because here phytoplankton absorption shows specific characteristics due to the low-light adaptation, and in situ data and ocean colour observations are scarce. To date, studies describing the typical chlorophyll profile based on the chlorophyll in the surface layer have not included the Arctic region, or, if it was included, the dependence of the profile shape on surface concentration was neglected. The goal of our study was to derive and describe the typical Greenland Sea chlorophyll profiles, categorized according to the chlorophyll concentration in the surface layer and further monthly resolved profiles. The Greenland Sea was chosen because it is known to be one of the most productive regions of the Arctic and is among the regions in the Arctic where most chlorophyll field data are available. Our database contained 1199 chlorophyll profiles from R/Vs Polarstern and Maria S. Merian cruises combined with data from the ARCSS-PP database (Arctic primary production in situ database) for the years 1957–2010. The profiles were categorized according to their mean concentration in the surface layer, and then monthly median profiles within each category were calculated. The category with the surface layer chlorophyll (CHL) exceeding 0.7 mg C m−3 showed values gradually decreasing from April to August. A similar seasonal pattern was observed when monthly profiles were averaged over all the surface CHL concentrations. The maxima of all chlorophyll profiles moved from the greater depths to the surface from spring to late summer respectively. The profiles with the smallest surface values always showed a subsurface chlorophyll maximum with its median magnitude reaching up to three times the surface concentration. While the variability of the Greenland Sea season in April, May and June followed the global non-monthly resolved relationship of the chlorophyll profile to surface chlorophyll concentrations described by the model of Morel and Berthon (1989), it deviated significantly from the model in the other months (July–September), when the maxima of the chlorophyll are at quite different depths. The Greenland Sea dimensionless monthly median profiles intersected roughly at one common depth within each category. By applying a Gaussian fit with 0.1 mg C m−3 surface chlorophyll steps to the median monthly resolved chlorophyll profiles of the defined categories, mathematical approximations were determined. They generally reproduce the magnitude and position of the CHL maximum, resulting in an average 4% underestimation in Ctot (and 2% in rough primary production estimates) when compared to in situ estimates. These mathematical approximations can be used as the input to the satellite-based primary production models that estimate primary production in the Arctic regions.


2012 ◽  
Vol 9 (6) ◽  
pp. 3567-3591
Author(s):  
A. Cherkasheva ◽  
A. Bracher ◽  
E.-M. Nöthig ◽  
E. Bauerfeind ◽  
C. Melsheimer

Abstract. Current estimates of global marine primary production range over a factor of two. At high latitudes, the uncertainty is even larger than globally because here in-situ data and ocean color observations are scarce, and the phytoplankton absorption shows specific characteristics due to the low-light adaptation. The improvement of the primary production estimates requires an accurate knowledge on the chlorophyll vertical profile, which is the basis for most primary production models. To date, studies describing the typical chlorophyll profile based on the chlorophyll in the surface layer did not include the Arctic region or, if it was included, the dependence of the profile shape on surface concentration was neglected. The goal of our study was to derive and describe the typical Greenland Sea chlorophyll profiles, categorized according to the chlorophyll concentration in the surface layer and further monthly resolved. The Greenland Sea was chosen because it is known to be one of the most productive regions of the Arctic and is among the Arctic regions where most chlorophyll field data are available. Our database contained 1199 chlorophyll profiles from R/Vs Polarstern and Maria S Merian cruises combined with data of the ARCSS-PP database (Arctic primary production in-situ database) for the years 1957–2010. The profiles were categorized according to their mean concentration in the surface layer and then monthly median profiles within each category were calculated. The category with the surface layer chlorophyll exceeding 0.7 mg C m−3 showed a clear seasonal cycle with values gradually decreasing from April to August. Chlorophyll profiles maxima moved from lower depths in spring towards the surface in late summer. Profiles with smallest surface values always showed a subsurface chlorophyll maximum with its median magnitude reaching up to three times the surface concentration. While the variability in April, May and June of the Greenland Sea season is following the global non-monthly resolved relationship of the chlorophyll profile to surface chlorophyll concentrations described by the model of Morel and Berthon (1989), it deviates significantly from that in other months (July–September) where the maxima of the chlorophyll are at quite different depths. The Greenland Sea dimensionless monthly median profiles intersect roughly at one common depth within each category. Finally, by applying a Gaussian fitting with 0.1 mg C m−3 surface chlorophyll steps to the median monthly resolved chlorophyll profiles of the defined categories, mathematical approximations have been determined. These will be used as the input to the satellite-based primary production models estimating primary production in Arctic regions.


2013 ◽  
Vol 58 (4) ◽  
pp. 1409-1418 ◽  
Author(s):  
C. Ferrier-Pagès ◽  
F. Gevaert ◽  
S. Reynaud ◽  
E. Beraud ◽  
D. Menu ◽  
...  

Ocean Science ◽  
2011 ◽  
Vol 7 (5) ◽  
pp. 705-732 ◽  
Author(s):  
F. Gohin

Abstract. Sea surface temperature, chlorophyll, and turbidity are three variables of the coastal environment commonly measured by monitoring networks. The observation networks are often based on coastal stations, which do not provide a sufficient coverage to validate the model outputs or to be used in assimilation over the continental shelf. Conversely, the products derived from satellite reflectance generally show a decreasing quality shoreward, and an assessment of the limitation of these data is required. The annual cycle, mean, and percentile 90 of the chlorophyll concentration derived from MERIS/ESA and MODIS/NASA data processed with a dedicated algorithm have been compared to in-situ observations at twenty-six selected stations from the Mediterranean Sea to the North Sea. Keeping in mind the validation, the forcing, or the assimilation in hydrological, sediment-transport, or ecological models, the non-algal Suspended Particulate Matter (SPM) is also a parameter which is expected from the satellite imagery. However, the monitoring networks measure essentially the turbidity and a consistency between chlorophyll, representative of the phytoplankton biomass, non-algal SPM, and turbidity is required. In this study, we derive the satellite turbidity from chlorophyll and non-algal SPM with a common formula applied to in-situ or satellite observations. The distribution of the satellite-derived turbidity exhibits the same main statistical characteristics as those measured in-situ, which satisfies the first condition to monitor the long-term changes or the large-scale spatial variation over the continental shelf and along the shore. For the first time, climatologies of turbidity, so useful for mapping the environment of the benthic habitats, are proposed from space on areas as different as the southern North Sea or the western Mediterranean Sea, with validation at coastal stations.


2009 ◽  
Vol 57 (3) ◽  
pp. 307-320
Author(s):  
G. Rabnecz ◽  
G. Záray ◽  
L. Lévai ◽  
F. Fodor

The effect of heavy metals on the leaf plasma membrane electron transport systems was investigated in connection with the tissue Fe concentration in Fe-sufficient and Fe-deficient cucumber leaves. Ten M μPb in the nutrient solution inhibited leaf ferricyanide reduction by 20–26%, whereas 10 M μCd had a more drastic effect, with 80–83% inhibition. Ferricyanide reduction decreased by 14% when 1 mM Pb was applied in situ by vacuum infiltration into control leaf discs, whereas it decreased by 40% when 0.1 mM Cd was applied. Ferricyanide reduction was completely inhibited by 1 mM Cd. The ferricyanide reduction values were correlated with the heavy metal, Fe and chlorophyll concentrations in the leaves. A significant linear correlation was only found with the chlorophyll concentration. The data suggest that there are also direct effects on membranebound reductases, but these are of less significance. Using differentially Fe-deficient plants (grown with 0 to 300 nM Fe in the nutrient solution), a chlorophyll concentration of 0.9–1.0 mg g −1 fresh weight was estimated as the threshold for achieving the ferricyanide reduction levels found in the controls.


Author(s):  
Rodrigo Omar MENDOZA-TAFOLLA ◽  
Porfirio JUAREZ-LOPEZ ◽  
Ronald-Ernesto ONTIVEROS-CAPURATA ◽  
Manuel SANDOVAL-VILLA ◽  
Iran ALIA-TEJACAL ◽  
...  

Nitrogen (N) is an essential nutrient for plant growth and development and is especially important in the production of high quality leafy green vegetables. In this experiment, leaf N concentration, chlorophyll concentration (Chl) and weight above fresh matter (AFM) of romaine lettuce (Lactuca sativa L. var. longifolia) were estimated by correlations between in situ SPAD and atLEAF readings. Lettuce was grown in high tunnels during 42 days and was irrigated at five nitrogen levels: 0, 4, 8, 12 and 16 mEq·L-1 of NO3-, based on the Steiner nutrient solution. The N concentration, Chl concentration and AFM were determined in the laboratory, while SPAD and atLEAF readings were measured in situ weekly. SPAD readings had high, positive and significant linear correlations with N (R2 = 0.90), Chl (R2 = 0.97) and AFM (R2 = 0.98); atLEAF readings had a similar linear correlation with N (R2 = 0.91), Chl (R2 = 0.92) and AFM (R2 = 0.97). Besides, SPAD and atLEAF readings had high, positive, and significant linear correlation (R2 = 0.96). Thus, SPAD and atLEAF meters can be used to non-destructively and accurately estimate the N status of lettuce, in a reliable and quick manner during the crop production cycle. In addition, atLEAF is currently more affordable than SPAD.   ********* In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 3, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue. *********


2002 ◽  
Vol 33 (2-3) ◽  
pp. 227-240 ◽  
Author(s):  
Helgi Arst ◽  
Ants Erm ◽  
Anu Reinart ◽  
Liis Sipelgas ◽  
Antti Herlevi

The method suggested earlier for estimating the spectra of diffuse attenuation coefficient of light in the water bodies relying on the beam attenuation coefficient measured from water samples, was improved and applied to different types of lakes. Measurement data obtained in 1994-95 and 1997-98 for 18 Estonian and Finnish lakes were used. The spectra of two characteristics were available for our investigations: 1) beam attenuation coefficient estimated from water samples in the laboratory with a spectrophotometer Hitachi U1000; 2) vertical irradiance (diffuse) attenuation coefficient measured in situ with an underwater spectroradiometer LI 1800UW. A total of 70 spectra were considered. Relying on these data the parameters of our earlier model were changed. The criterion of the efficiency of the new version of our model is the coincidence of the spectra of diffuse attenuation coefficient derived from Hitachi U1000 data (Kdc) with those obtained by underwater irradiance measurements (Kdm). Correlation analysis of the model's results gave the relationship Kdm=1.0023Kdc with correlation coefficient 0.961. The respective values of mean relative difference and standard deviation were 5.4% and 0.55 m−1. This method may be useful in conditions where in situ measuring of underwater irradiance spectra cannot be performed because of weather conditions. As the measurement of the underwater radiation field is often a complicated and expensive procedure, our numerical method may be useful for estimating the underwater light climate.


Sign in / Sign up

Export Citation Format

Share Document