The Effects of Different Production Rate Measures and Cost Structures on Rate Adjustment Models

1990 ◽  
pp. 82-98 ◽  
Author(s):  
Dan C. Boger ◽  
Shu S. Liao
TAPPI Journal ◽  
2018 ◽  
Vol 17 (05) ◽  
pp. 295-305
Author(s):  
Wesley Gilbert ◽  
Ivan Trush ◽  
Bruce Allison ◽  
Randy Reimer ◽  
Howard Mason

Normal practice in continuous digester operation is to set the production rate through the chip meter speed. This speed is seldom, if ever, adjusted except to change production, and most of the other digester inputs are ratioed to it. The inherent assumption is that constant chip meter speed equates to constant dry mass flow of chips. This is seldom, if ever, true. As a result, the actual production rate, effective alkali (EA)-to-wood and liquor-to-wood ratios may vary substantially from assumed values. This increases process variability and decreases profits. In this report, a new continuous digester production rate control strategy is developed that addresses this shortcoming. A new noncontacting near infrared–based chip moisture sensor is combined with the existing weightometer signal to estimate the actual dry chip mass feedrate entering the digester. The estimated feedrate is then used to implement a novel feedback control strategy that adjusts the chip meter speed to maintain the dry chip feedrate at the target value. The report details the results of applying the new measurements and control strategy to a dual vessel continuous digester.


1965 ◽  
Vol 48 (2) ◽  
pp. 263-271 ◽  
Author(s):  
Herbert Schriefers ◽  
Gerlinde Scharlau ◽  
Franzis Pohl

ABSTRACT After the administration of anabolic steroids to adult female rats in daily doses of 1 mg per animal for 14 days, the following parameters were investigated: the rate of the Δ4-5α-hydrogenase-catalyzed cortisone reduction in liver slices and microsomal fractions, the adrenal weight and the in vitro corticosterone production rate. Among the steroids tested, only 17α-methyl-testosterone and 17α-ethyl-19-nor-testosterone were effective in lowering significantly cortisone reduction rate by liver slices with concomitant decreases in microsomal Δ4-5α-hydrogenase-activity. Testosterone, 19-nor-testosterone, 17α-ethinyl-19-nor-testosterone, 17α-methyl-17β-hydroxy-androsta-1,4-dien-3-one and 1-methyl-17β-hydroxy-androst-1-en-3-one were ineffective or only slightly effective. Adrenal weight and absolute corticosterone production rate (μg/60 min per animal) were decreased after treatment with 17α-methyl-testosterone, 17α-ethyl-19-nor-testosterone and 1-methyl-17β-hydroxy-androst-1-en-3-one. Corticosterone production was decreased with 17α-ethinyl-19-nor-testosterone in spite of an unchanged adrenal weight. The relative corticosterone production rate (μg/60 min · 100 mg adrenal) was in any cases unaffected. According to these results there exists – with the exception of 17α-ethinyl-19-nor-testosterone – a strict parallelism between corticosteroid turnover and corticosterone production rate: unchanged turnover is correlated with unchanged corticosterone production rate, while a decreased turnover is correlated with decreased adrenal activity. The protein-anabolic effect of certain anabolic steroids may be partly due to an anti-catabolic action of these compounds resulting from a decreased corticosteroid inactivation and production rate. Possible mechanisms by which anabolic steroids may affect corticosteroid-balance are discussed.


1972 ◽  
Vol 70 (1) ◽  
pp. 89-96 ◽  
Author(s):  
M. J. Levell

ABSTRACT Five normal subjects were given [14C] cortisol in the morning and [3H] cortisol in the evening, in both cases by mouth. The excretion of radioactivity in tetrahydrocortisol (THF) and tetrahydrocortisone (THE) was measured by a modified form of reverse isotope dilution. In 2 subjects, the ratio of isotopic THF/isotopic THE was higher after the evening dose than after the morning dose. In 1 subject the ratio decreased. In 2 subjects it did not change. Cortisol production rates calculated from THF were usually higher than those calculated from THE. The observed variations of metabolism were only a contributory factor to these discrepancies.


2004 ◽  
Vol 26 (8) ◽  
pp. 623-627 ◽  
Author(s):  
Teak-Bum Kim ◽  
Yong-Joo Lee ◽  
Pil Kim ◽  
Chang Sup Kim ◽  
Deok-Kun Oh

2021 ◽  
Vol 502 (3) ◽  
pp. 3491-3499
Author(s):  
K Aravind ◽  
Shashikiran Ganesh ◽  
Kumar Venkataramani ◽  
Devendra Sahu ◽  
Dorje Angchuk ◽  
...  

ABSTRACT Comet 2I/Borisov is the first true interstellar comet discovered. Here, we present results from observational programs at two Indian observatories, 2 m Himalayan Chandra Telescope at the Indian Astronomical Observatory, Hanle (HCT) and 1.2 m telescope at the Mount Abu Infrared Observatory (MIRO). Two epochs of imaging and spectroscopy were carried out at the HCT and three epochs of imaging at MIRO. We found CN to be the dominant molecular emission on both epochs, 2019 November 30 and December 22, at distances of rH = 2.013 and 2.031 au, respectively. The comet was inferred to be relatively depleted in Carbon bearing molecules on the basis of low C2 and C3 abundances. We find the production rate ratio, Q(C2)/Q(CN) = 0.54 ± 0.18, pre-perihelion and Q(C2)/Q(CN) = 0.34 ± 0.12 post-perihelion. This classifies the comet as being moderately depleted in carbon chain molecules. Using the results from spectroscopic observations, we believe the comet to have a chemically heterogeneous surface having variation in abundance of carbon chain molecules. From imaging observations, we infer a dust-to-gas ratio similar to carbon chain depleted comets of the Solar system. We also compute the nucleus size to be in the range 0.18 km ≤ r ≤ 3.1 km. Our observations show that 2I/Borisov’s behaviour is analogous to that of the Solar system comets.


2021 ◽  
Vol 5 (3) ◽  
pp. 78
Author(s):  
Mohammad Muhshin Aziz Khan ◽  
Shanta Saha ◽  
Luca Romoli ◽  
Mehedi Hasan Kibria

This paper focuses on optimizing the laser engraving of acrylic plastics to reduce energy consumption and CO2 gas emissions, without hindering the production and material removal rates. In this context, the role of laser engraving parameters on energy consumption, CO2 gas emissions, production rate, and material removal rate was first experimentally investigated. Grey–Taguchi approach was then used to identify an optimal set of process parameters meeting the goal. The scan gap was the most significant factor affecting energy consumption, CO2 gas emissions, and production rate, whereas, compared to other factors, its impact on material removal rate (MRR) was relatively lower. Moreover, the defocal length had a negligible impact on the response variables taken into consideration. With this laser-process-material combination, to achieve the desired goal, the laser must be focused on the surface, and laser power, scanning speed, and scan gap must be set at 44 W, 300 mm/s, and 0.065 mm, respectively.


Author(s):  
Mohammed Alkahtani ◽  
Muhammad Omair ◽  
Qazi Salman Khalid ◽  
Ghulam Hussain ◽  
Imran Ahmad ◽  
...  

The management of a controllable production in the manufacturing system is essential to achieve viable advantages, particularly during emergency conditions. Disasters, either man-made or natural, affect production and supply chains negatively with perilous effects. On the other hand, flexibility and resilience to manage the perpetuated risks in a manufacturing system are vital for achieving a controllable production rate. Still, these performances are strongly dependent on the multi-criteria decision making in the working environment with the policies launched during the crisis. Undoubtedly, health stability in a society generates ripple effects in the supply chain due to high demand fluctuation, likewise due to the Coronavirus disease-2019 (COVID-19) pandemic. Incorporation of dependent demand factors to manage the risk from uncertainty during this pandemic has been a challenge to achieve a viable profit for the supply chain partners. A non-linear supply chain management model is developed with a controllable production rate to provide an economic benefit to the manufacturing firm in terms of the optimized total cost of production and to deal with the different situations under variable demand. The costs in the model are set as fuzzy to cope up with the uncertain conditions created by lasting pandemic. A numerical experiment is performed by utilizing the data set of the multi-stage manufacturing firm. The optimal results provide support for the industrial managers based on the proactive plan by the optimal utilization of the resources and controllable production rate to cope with the emergencies in a pandemic.


Sign in / Sign up

Export Citation Format

Share Document