Two High-Throughput Techniques for Determining Wood Properties as Part of a Molecular Genetics Analysis of Hybrid Poplar and Loblolly Pine

Author(s):  
Gerald Tuskan ◽  
Darrell West ◽  
Harvey D. Bradshaw ◽  
David Neale ◽  
Mitch Sewell ◽  
...  
1999 ◽  
Vol 77 (1-3) ◽  
pp. 55-66 ◽  
Author(s):  
Gerald Tuskan ◽  
Darrell West ◽  
Harvy D. Bradshaw ◽  
David Neale ◽  
Mitch Sewell ◽  
...  

2021 ◽  
Vol 491 ◽  
pp. 119176
Author(s):  
Michael A. Blazier ◽  
Thomas Hennessey ◽  
Laurence Schimleck ◽  
Scott Abbey ◽  
Ryan Holbrook ◽  
...  

Forests ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 418
Author(s):  
Gifty Acquah ◽  
Brian Via ◽  
Tom Gallagher ◽  
Nedret Billor ◽  
Oladiran Fasina ◽  
...  

Pinus taeda L. (loblolly pine) dominates 13.4 million ha of US southeastern forests and contributes over $30 billion to the economy of the region. The species will also form an important component of the renewable energy portfolio as the United States seeks national and energy security as well as environmental sustainability. This study employed NIR-based chemometric models as a high throughput screening tool to estimate the chemical traits and bioenergy potential of 351 standing loblolly pine trees representing 14 elite genetic families planted on two forest sites. The genotype of loblolly pine families affected the chemical, proximate and energy traits studied. With a range of 36.7% to 42.0%, the largest genetic variation (p-value < 0.0001) was detected in the cellulose content. Furthermore, although family by site interactions were significant for all traits, cellulose was the most stable across the two sites. Considering that cellulose content has strong correlations with other properties, selecting and breeding for cellulose could generate some gains.


2014 ◽  
Vol 44 (3) ◽  
pp. 263-272 ◽  
Author(s):  
Finto Antony ◽  
Laurence R. Schimleck ◽  
Lewis Jordan ◽  
Benjamin Hornsby ◽  
Joseph Dahlen ◽  
...  

The use of clonal varieties in forestry offers great potential to improve growth traits (quantity) and wood properties (quality) of loblolly pine (Pinus taeda L.). Loblolly pine trees established via somatic embryogenesis (clones), full-sib zygotic crosses, and half-sib zygotic open-pollinated families were sampled to identify variation in growth and wood properties among and within clonal lines and zygotic controls. Increment cores 5 mm in diameter were collected at age 4 from a total of 2615 trees. Growth properties (diameter at 1.4 m and total tree height) and wood properties (whole-core density, latewood and earlywood density, and latewood percent) were measured for each tree sampled in the study. Overall, growth properties were better for full-sib seedling than for clonal lines, whereas wood density was higher for clonal lines than full-sib and open-pollinated seedlings. However, there were clonal lines with better growth and higher wood density. Clonal repeatability of both growth and wood properties across sampled sites and genetic correlations between growth and wood traits were determined, with higher repeatability observed for wood traits compared with growth traits. Significant genetic correlations were observed for tree height and wood properties, whereas weak correlations were observed for diameter and wood properties.


2015 ◽  
Vol 61 (1) ◽  
pp. 55-66 ◽  
Author(s):  
Finto Antony ◽  
Laurence R. Schimleck ◽  
Richard F. Daniels ◽  
Alexander Clark ◽  
Bruce E. Borders ◽  
...  

2009 ◽  
Vol 39 (5) ◽  
pp. 928-935 ◽  
Author(s):  
Finto Antony ◽  
Lewis Jordan ◽  
Richard F. Daniels ◽  
Laurence R. Schimleck ◽  
Alexander Clark ◽  
...  

Wood properties and growth were measured on breast-height cores and on disks collected at different heights from a thinned and fertilized midrotation loblolly pine ( Pinus taeda L.) plantation in the lower Coastal Plain of North Carolina. The study was laid out in a randomized complete-block design receiving four levels of nitrogen (N) fertilizer: unfertilized control and 112, 224, and 336 kg/ha plus 28 kg/ha of phosphorus with each treatment. The effect of fertilization was analyzed for the whole-disk and for a 4 year average following fertilization on data collected from breast-height cores and from disks. The fertilization treatments did not significantly affect whole-disk wood properties but significantly increased radial growth. Fertilization rate of 336 kg/ha N significantly reduced 4 year average ring specific gravity and latewood specific gravity. Wood properties of trees that received 112 and 224 kg/ha N were not affected following treatment. There was no height related trend in wood property changes due to fertilization. Fertilization significantly increased ring basal area and earlywood basal area. In summary, there was a decline in wood properties and an increase in basal area growth immediately after fertilization; both depended on the rate of fertilizer applied irrespective of height.


2005 ◽  
Vol 35 (1) ◽  
pp. 85-92 ◽  
Author(s):  
P D Jones ◽  
L R Schimleck ◽  
G F Peter ◽  
R F Daniels ◽  
A Clark III

Preliminary studies based on small sample sets show that near infrared (NIR) spectroscopy has the potential for rapidly estimating many important wood properties. However, if NIR is to be used operationally, then calibrations using several hundred samples from a wide variety of growing conditions need to be developed and their performance tested on samples from new populations. In this study, 120 Pinus taeda L. (loblolly pine) radial strips (cut from increment cores) representing 15 different sites from three physiographic regions in Georgia (USA) were characterized in terms of air-dry density, microfibril angle (MFA), and stiffness. NIR spectra were collected in 10-mm increments from the radial longitudinal surface of each strip and split into calibration (nine sites, 729 spectra) and prediction sets (six sites, 225 spectra). Calibrations were developed using untreated and mathematically treated (first and second derivative and multiplicative scatter correction) spectra. Strong correlations were obtained for all properties, the strongest R2 values being 0.83 (density), 0.90 (MFA), and 0.93 (stiffness). When applied to the test set, good relationships were obtained (Rp2 ranged from 0.80 to 0.90), but the accuracy of predictions varied depending on math treatment. The addition of a small number of cores from the prediction set (one core per new site) to the calibration set improved the accuracy of predictions and importantly minimized the differences obtained with the various math treatments. These results suggest that density, MFA, and stiffness can be estimated by NIR with sufficient accuracy to be used in operational settings.


2002 ◽  
Vol 104 (2) ◽  
pp. 214-222 ◽  
Author(s):  
M. M. Sewell ◽  
M. F. Davis ◽  
G. A. Tuskan ◽  
N. C. Wheeler ◽  
C. C. Elam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document