Plastic Flow Properties in Relation to Localized Necking in Sheets

1978 ◽  
pp. 287-312 ◽  
Author(s):  
A. K. Ghosh
1999 ◽  
Vol 66 (1) ◽  
pp. 3-9 ◽  
Author(s):  
V. Tvergaard

Analyses of plastic instabilities are reviewed, with focus on results in structural mechanics as well as continuum mechanics. First the basic theories for bifurcation and post-bifurcation behavior are briefly presented. Then, localization of plastic flow is discussed, including shear band formation in solids, localized necking in biaxially stretched metal sheets, and the analogous phenomenon of buckling localization in structures. Also some recent results for cavitation instabilities in elastic-plastic solids are reviewed.


2008 ◽  
Vol 56 (14) ◽  
pp. 3338-3343 ◽  
Author(s):  
Ju-Young Kim ◽  
Seung-Kyun Kang ◽  
Julia R. Greer ◽  
Dongil Kwon

1961 ◽  
Vol 83 (4) ◽  
pp. 499-508 ◽  
Author(s):  
R. L. Mehan

The yielding and fracture characteristics of Zircaloy-2 as a function of stress state were investigated at room temperature through the medium of thin-walled cylindrical specimens under internal pressure and axial tension. Stress states from uniaxial longitudinal tension to uniaxial tangential tension were examined. Two tests at elevated temperature were performed at a single stress ratio. It was found that the fracture ductility lessened with increasing biaxiality. A minimum in ductility was found at balanced biaxial tension where the fracture ductility, as expressed by the effective strain, was 29 per cent. The yielding and plastic flow properties were found to be highly anisotropic. Two methods were used to express the plastic flow data: a graphical approach and a theoretical analysis based on a theory proposed by R. Hill, either one of which is suitable to express the flow properties of Zircaloy-2 under various states of combined stress.


1995 ◽  
Vol 10 (2) ◽  
pp. 258-260 ◽  
Author(s):  
C.T. Stanton ◽  
C.S. Coffey ◽  
F. Zerilli

The electroplastic effect in materials is an interesting and potentially useful phenomenon in which an applied electric field affects the plastic flow properties of materials under strain. We have undertaken a study to use optical methods to monitor changes in alkali halide crystals undergoing the electroplastic effect. Some preliminary results from this work are presented along with more conventional quasi-static measurements of the electroplastic effect.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1386 ◽  
Author(s):  
Mohamed Ben Bettaieb ◽  
Farid Abed-Meraim

The yield criterion in rate-independent single crystal plasticity is most often defined by the classical Schmid law. However, various experimental studies have shown that the plastic flow of several single crystals (especially with Body Centered Cubic crystallographic structure) often exhibits some non-Schmid effects. The main objective of the current contribution is to study the impact of these non-Schmid effects on the ductility limit of polycrystalline sheet metals. To this end, the Taylor multiscale scheme is used to determine the mechanical behavior of a volume element that is assumed to be representative of the sheet metal. The mechanical behavior of the single crystals is described by a finite strain rate-independent constitutive theory, where some non-Schmid effects are accounted for in the modeling of the plastic flow. The bifurcation theory is coupled with the Taylor multiscale scheme to predict the onset of localized necking in the polycrystalline aggregate. The impact of the considered non-Schmid effects on both the single crystal behavior and the polycrystal behavior is carefully analyzed. It is shown, in particular, that non-Schmid effects tend to precipitate the occurrence of localized necking in polycrystalline aggregates and they slightly influence the orientation of the localization band.


2007 ◽  
Vol 367-370 ◽  
pp. 527-538 ◽  
Author(s):  
P. Spätig ◽  
R. Bonadé ◽  
G.R. Odette ◽  
J.W. Rensman ◽  
E.N. Campitelli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document