The Use of Graphite/Epoxy Composites in Aerospace Structures Subject to Low Temperatures

Author(s):  
K A Philpot ◽  
R E Randolph
Aerospace ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 7 ◽  
Author(s):  
Aikaterini-Flora Trompeta ◽  
Elias Koumoulos ◽  
Sotirios Stavropoulos ◽  
Theodoros Velmachos ◽  
Georgios Psarras ◽  
...  

Epoxy composites are widely used in primary aerospace structures, where high impact damage properties are necessary. However, challenges appear when multiple functionalities, including electrical and thermal conductivity, are needed in parallel with increased mechanical properties. The current study aims at the assessment of a critical concentration of multiwalled carbon nanotubes (MWCNTs), incorporated in epoxy resin, which will indicate a threshold for optimal electrical, thermal and mechanical properties. For the evaluation of this optimal concentration, electrical conductivity, thermal stability and nanomechanical properties (Young modulus and nanohardness) have been assessed, for epoxy nanocomposites with 0 to 15 parts per hundred resin per weight (phr) MWCNTs. Percolation theory was applied to study the electrical conductivity for different contents of MWCNTs in the epoxy nanocomposite system. Thermogravimetric analysis was employed for the assessment of the epoxy composites’ thermal properties. Nanohardness and elastic modulus were measured, and the hardness versus modulus index was calculated. Emphasis was given to the dispersion of MWCNTs in the epoxy matrix, which was assessed by both microscopy techniques and X-ray micro–computed tomography. A correlation between the optimum dispersion and MWCNTs content in terms of electrical conductivity, thermal stability, and nanomechanical properties revealed a threshold concentration at 3 phr, allowing the manufacturing of aerospace structures with multifunctional properties.


2007 ◽  
Vol 72 (7) ◽  
pp. 713-722 ◽  
Author(s):  
Slavisa Putic ◽  
Marina Stamenovic ◽  
Branislav Bajceta ◽  
Predrag Stajcic ◽  
Srdjan Bosnjak

The aim of this paper is to present the influence of high and low temperatures on the impact properties glass-epoxy composites. The impact strength an is presented for four different glass-epoxy composite structures at three different temperatures, i.e., at room temperature t=20?C, at an elevated temperature t=+50?C and at a low temperature t=-50?C. Standard mechanical testing was carried out on the composite materials with specific masses of reinforcement of 210 g m-2 and 550 g m-2 and orientations 0?/90? and ?45?. Micromechanical analysis of the failure was performed in order to determine real models and mechanisms of crack and temperature influence on the impact properties. .


2007 ◽  
Vol 79 (1) ◽  
pp. 84-89 ◽  
Author(s):  
Myung-Gon Kim ◽  
Sang-Guk Kang ◽  
Chun-Gon Kim ◽  
Cheol-Won Kong

Cryogenics ◽  
1984 ◽  
Vol 24 (11) ◽  
pp. 639-647 ◽  
Author(s):  
G. Hartwig ◽  
S. Knaak

Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1057 ◽  
Author(s):  
Cho-Rong Oh ◽  
Dae-Il Lee ◽  
Jun-Hong Park ◽  
Dai-Soo Lee

In this work, thermally healable graphene-nanoplate/epoxy (GNP/EP) nanocomposites were investigated. GNPs were used as reinforcement and crosslinking platforms for the diglycidyl ether of bisphenol A-based epoxy resin (DGEBA) through the Diels-Alder (DA) reaction with furfurylamine (FA). The GNPs and FA could then be used as a derivative of diene and dienophile in the DA reaction. It was expected that the combination of GNPs and FA in DGEBA would produce composites based on the interfacial properties of the components. We confirmed the DA reaction of GNPs and FA at the interface during curing of the GNP/EP nanocomposites. This procedure is simple and solvent-free. DA and retro DA reactions of the obtained composites were demonstrated, and the thermal healing properties were evaluated. The behavior of the GNP/EP nanocomposites in the DA reaction is similar to that of thermosetting polymers at low temperatures due to crosslinking by the DA reaction, and the nanocomposites can be recycled by a retro DA reaction at high temperatures.


1991 ◽  
Vol 27 (3) ◽  
pp. 251-256 ◽  
Author(s):  
V. I. Kvlividze ◽  
Yu. A. Gorbatkina ◽  
V. G. Ivanova-Mumzhieva ◽  
A. M. Kuperman ◽  
N. I. Shaidurova

Sign in / Sign up

Export Citation Format

Share Document