Antioxidant and Cytoprotective Activity of Indole Derivatives Related to Melatonin

Author(s):  
Marco Mor ◽  
Gilberto Spadoni ◽  
Giuseppe Diamantini ◽  
Annalida Bedini ◽  
Giorgio Tarzia ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Beata Jasiewicz ◽  
Weronika Kozanecka-Okupnik ◽  
Michał Przygodzki ◽  
Beata Warżajtis ◽  
Urszula Rychlewska ◽  
...  

AbstractA series of fifteen indole derivatives substituted at the C-3 position were synthesized and characterized. The antioxidant activity of all derivatives was investigated by three in vitro antioxidant assays, and the derivative with pyrrolidinedithiocarbamate moiety was the most active as a radical scavenger and Fe3+-Fe2+ reducer. It can be stated that possible hydrogen and electron transfer mechanism is suggested for the quenching of the free radical. Moreover, the indolyl radical stabilization and the presence of unsubstituted indole nitrogen atom are mandatory for the observed antioxidant activity, which strongly depends on the type of the substituent directly connected to the methylene group at the C-3 position. Human red blood cells (RBC) have been used as a cell model to study derivatives interaction with the cell membrane. Haemolytic activity and RBC shape transformation were observed for certain derivatives in a concentration-dependent manner. However, most of the derivatives at sublytic concentration showed high cytoprotective activity against oxidative haemolysis induced by 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH). The cytoprotective properties of derivatives can be explained mostly due to their interactions with the RBC membrane components. Taking together, theoretical estimations and experimental data confirm the beneficial interactions between the selected C-3 substituted indole derivatives and the RBC membrane under oxidative stress conditions. These results encourage us to further structural optimization of C-3 substituted indole derivatives as potent antioxidant compounds.


Author(s):  
Xin-Ming Xu ◽  
Ming Xie ◽  
Jiazhu Li ◽  
Mei-Xiang Wang

An exquisite Pybox/Cu(OTf)2-catalyzed asymmetric tandem reaction of tertiary enamides was developed, which enabled the expeditious synthesis of indolizino[8,7-b]indole derivatives in high yield, excellent enantioselectivity and diastereoselectivity.


2020 ◽  
Vol 24 (22) ◽  
pp. 2665-2693
Author(s):  
Dipayan Mondal ◽  
Pankaj Lal Kalar ◽  
Shivam Kori ◽  
Shovanlal Gayen ◽  
Kalpataru Das

Indole moiety is often found in different classes of pharmaceutically active molecules having various biological activities including anticancer, anti-viral, anti-psychotic, antihypertensive, anti-migraine, anti-arthritis and analgesic activities. Due to enormous applications of indole derivatives in pharmaceutical chemistry, a number of conventional synthetic methods as well as green methodology have been developed for their synthesis. Green methodology has many advantages including high yields, short reaction time, and inexpensive reagents, highly efficient and environmentally benign over conventional methods. Currently, the researchers in academia as well as in pharmaceutical industries have been developing various methods for the chemical synthesis of indole based compounds via green approaches to overcome the drawbacks of conventional methods. This review reflects the last ten years developments of the various greener methods for the synthesis of indole derivatives by using microwave, ionic liquids, water, ultrasound, nanocatalyst, green catalyst, multicomponent reaction and solvent-free reactions etc. (please see the scheme below). Furthermore, the applications of green chemistry towards developments of indole containing pharmaceuticals and their biological studies have been represented in this review.


2016 ◽  
Vol 20 (20) ◽  
pp. 2038-2054 ◽  
Author(s):  
István Szatmári ◽  
Judit Sas ◽  
Ferenc Fülöp
Keyword(s):  

2020 ◽  
Vol 9 (2) ◽  
pp. 78-88
Author(s):  
Mulugeta Mulat ◽  
Raksha Anand ◽  
Fazlurrahman Khan

The diversity of indole concerning its production and functional role has increased in both prokaryotic and eukaryotic systems. The bacterial species produce indole and use it as a signaling molecule at interspecies, intraspecies, and even at an interkingdom level for controlling the capability of drug resistance, level of virulence, and biofilm formation. Numerous indole derivatives have been found to play an important role in the different systems and are reported to occur in various bacteria, plants, human, and plant pathogens. Indole and its derivatives have been recognized for a defensive role against pests and insects in the plant kingdom. These indole derivatives are produced as a result of the breakdown of glucosinolate products at the time of insect attack or physical damages. Apart from the defensive role of these products, in plants, they also exhibit several other secondary responses that may contribute directly or indirectly to the growth and development. The present review summarized recent signs of progress on the functional properties of indole and its derivatives in different plant systems. The molecular mechanism involved in the defensive role played by indole as well as its’ derivative in the plants has also been explained. Furthermore, the perspectives of indole and its derivatives (natural or synthetic) in understanding the involvement of these compounds in diverse plants have also been discussed.


2019 ◽  
Vol 83 ◽  
pp. 520-525 ◽  
Author(s):  
Kuang-Feng Chu ◽  
Jen-Shin Song ◽  
Chiung-Tong Chen ◽  
Teng-Kuang Yeh ◽  
Tsung-Chih Hsieh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document