Regulation of Polyamine Synthesis in Mammalian Cells

Author(s):  
Lo Persson ◽  
Ingvar Holm ◽  
Louise Stjernborg ◽  
Olle Heby
Author(s):  
Bryan C. Mounce ◽  
Michelle E. Olsen ◽  
Marco Vignuzzi ◽  
John H. Connor

SUMMARY Polyamines are small, abundant, aliphatic molecules present in all mammalian cells. Within the context of the cell, they play a myriad of roles, from modulating nucleic acid conformation to promoting cellular proliferation and signaling. In addition, polyamines have emerged as important molecules in virus-host interactions. Many viruses have been shown to require polyamines for one or more aspects of their replication cycle, including DNA and RNA polymerization, nucleic acid packaging, and protein synthesis. Understanding the role of polyamines has become easier with the application of small-molecule inhibitors of polyamine synthesis and the use of interferon-induced regulators of polyamines. Here we review the diverse mechanisms in which viruses require polyamines and investigate blocking polyamine synthesis as a potential broad-spectrum antiviral approach.


2002 ◽  
Vol 282 (6) ◽  
pp. C1290-C1297 ◽  
Author(s):  
Qing Yuan ◽  
Ramesh M. Ray ◽  
Leonard R. Johnson

C1297, 2002; 10.1152/ajpcell.00351.2001.We have shown previously that depletion of polyamines delays apoptosis induced by camptothecin in rat intestinal epithelial cells (IEC-6). Mitochondria play an important role in the regulation of apoptosis in mammalian cells because apoptotic signals induce mitochondria to release cytochrome c. The latter interacts with Apaf-1 to activate caspase-9, which in turn activates downstream caspase-3. Bcl-2 family proteins are involved in the regulation of cytochrome c release from mitochondria. In this study, we examined the effects of polyamine depletion on the activation of the caspase cascade, release of cytochrome cfrom mitochondria, and expression and translocation of Bcl-2 family proteins. We inhibited ornithine decarboxylase, the first rate-limiting enzyme in polyamine synthesis, with α-difluoromethylornithine (DFMO) to deplete cells of polyamines. Depletion of polyamines prevented camptothecin-induced release of cytochrome c from mitochondria and decreased the activity of caspase-9 and caspase-3. The mitochondrial membrane potential was not disrupted when cytochrome c was released. Depletion of polyamines decreased translocation of Bax to mitochondria during apoptosis. The expression of antiapoptotic proteins Bcl-xL and Bcl-2 was increased in DFMO-treated cells. Caspase-8 activity and cleavage of Bid were decreased in cells depleted of polyamines. These results suggest that polyamine depletion prevents IEC-6 cells from apoptosis by preventing the translocation of Bax to mitochondria, thus preventing the release of cytochrome c.


1983 ◽  
Vol 216 (3) ◽  
pp. 597-604 ◽  
Author(s):  
A A Neyfakh ◽  
K N Yarygin ◽  
S I Gorgolyuk

The activity of ornithine decarboxylase (ODC) (the key enzyme of polyamine synthesis) in different poikilothermic animals depends on the temperatures at which they were kept just before the enzyme assay. With an increase in temperature (within physiological limits) ODC activity rises 5-25-fold within several hours. With a decrease in temperature it falls at the same rate. This effect, studied on loach (Misgurnus fossilis) embryos in detail, was also shown for embryos, larvae and some adult tissues of many species. It is not, however, observed in homoiothermic animals (chick embryos and mammalian cells), nor in bacteria and plants. Changes in polyamine concentrations follow those in ODC activity, but more slowly and to a lesser extent. It is assumed that modulation of ODC activity changes as a result of its synthesis and degradation. We suggest that the temperature-dependence of ODC activity is a mechanism of adaptation which maintains the optimal cellular concentration of polyamines for each temperature.


1988 ◽  
Vol 255 (1) ◽  
pp. 145-152 ◽  
Author(s):  
L Christa ◽  
J Kersual ◽  
J Augé ◽  
J L Pérignon

5′-Deoxy-5′-methylthioadenosine, a by-product of polyamine synthesis, can support the growth of Raji cells in a methionine-free medium, but not the growth of CCL39 cells, although these cells are also able to incorporate radiolabelled 5′-deoxy-5′-methylthioadenosine (MeSAdo) into methionine, S-adenosyl-L-methionine (AdoMet) and proteins [Christa, Kersual, Augé & Pérignon (1986) Biochem. Biophys. Res. Commun. 135, 131-138]. We first tested the hypothesis of a toxic effect of MeSAdo in the conditions of growth experiments: we could not demonstrate any toxic effect of MeSAdo on the synthesis of macromolecules, nor any toxicity mediated by polyamines or pyrimidine starvation, and we found that the growth of CCL39 cells was strictly dependent on the supply of exogenous methionine. We then tried to determine whether the ability of CCL39 cells to metabolize MeSAdo to methionine and AdoMet was modulated by the proliferation state of CCL39 cells, which is dependent on the supply of exogenous methionine. Studies of the incorporation of radiolabelled MeSAdo show that: (i) the total synthesis of methionine from MeSAdo is twice as high in subconfluent cells (grown in 100 microM-methionine) as in resting cells (cultured in 0 microM-methionine); (ii) the incorporation into proteins does not parallel the total protein synthesis, and the methionine derived from MeSAdo mostly flows out of the cell; (iii) addition of methionine to resting cells immediately leads to a transient and marked increase in metabolism of MeSAdo to AdoMet, presumably reflecting the rapid replenishment of the AdoMet pool of the cells. Taken together, these results suggest that the methionine derived from MeSAdo is preferentially used to synthesize AdoMet rather than proteins, and that this synthesis of AdoMet depends on the ability of the CCL39 cells to grow, and hence on the supply of exogenous methionine. It is proposed that, in CCL39 cells, the metabolic pathway leading from MeSAdo (a by-product of polyamine synthesis) to methionine and to AdoMet (a precursor of polyamine synthesis) is part of a metabolic cycle the activity of which depends, like polyamine synthesis itself, on cell proliferation.


1998 ◽  
Vol 335 (2) ◽  
pp. 329-334 ◽  
Author(s):  
John L. A. MITCHELL ◽  
Jennifer RUPERT ◽  
Aviva LEYSER ◽  
Gary G. JUDD

Mammalian cells become more susceptible to radiation-induced death and mutagenesis when restricted in their production of the natural polyamines putrescine, spermidine and spermine. The effects of polyamine deprivation are reversed by N-(2-mercaptoethyl)-1,3-diaminopropane (WR1065), a simple aminothiol that has been extensively studied for its radioprotectant properties. Because this compound and its oxidized derivative WR33278 bear some resemblance to the polyamines, it was hypothesized that radioprotection by WR1065 or its metabolites is derived, at least in part, from their ability to supplement the natural polyamines. To evaluate the ability of these aminothiol compounds to emulate polyamine function in intact cells, rat liver hepatoma (HTC) cells were treated with radioprotective doses of WR1065; the ability of this compound to affect various aspects of normal polyamine metabolism was monitored. Although cellular WR1065 was maintained at levels exceeding those of the polyamines, this aminothiol did not have any polyamine-like effect on the initial polyamine biosynthetic enzyme, ornithine decarboxylase, or on polyamine degradative reactions. On the contrary, treatment with relatively low levels of WR1065 resulted in an unexpected increase in putrescine and spermidine synthesis. WR1065 treatment enhanced the stability, and consequently the activity, of ornithine decarboxylase. This stabilization seems to result from a WR1065-induced delay in the synthesis of antizyme, a critical regulatory protein required in the feedback modulation of polyamine synthesis and transport. The increase in cellular spermidine induced by WR1065 might explain its antimutagenic properties, but is probably not a factor in protection against cell killing by radiation. This is the first evidence that compounds can be designed to control polyamine levels by targeting the activity of the regulatory protein antizyme.


2010 ◽  
Vol 10 ◽  
pp. 1723-1730 ◽  
Author(s):  
Gustavo S. G. de Carvalho ◽  
Patrícia A. Machado ◽  
Daniela T. S. de Paula ◽  
Elaine S. Coimbra ◽  
Adilson D. da Silva

This paper describes the preparation of N,N'-disubstituted ethylenediamine and imidazolidine derivatives and their in vitro biological activities againstLeishmaniaspecies. Of the nine synthesized compounds, five displayed a good activity in bothL. amazonensisandL. majorpromastigotes. The compounds 1,2-Bis(p-methoxybenzyl)ethylenediamine (4) and 1,3-Bis(p-methoxybenzyl)imidazolidines (5) showed the best activity on intracellular amastigotes, with IC50values of 2.0 and 9.4 μ/mL, respectively. In addition, none of compounds were cytotoxic against mammalian cells. The leishmanicidal activity can be related with inhibition of polyamine synthesis and cellular penetration within biological membranes.


1979 ◽  
Vol 180 (1) ◽  
pp. 87-94 ◽  
Author(s):  
D R Bethell ◽  
A E Pegg

1. The induction of ornithine decarboxylase activity in mouse 3T3 fibroblasts or an SV-40 transformed 3T3 cell line by serum was prevented by addition of the naturally occurring polyamines putrescine (butane-1,4-diamine) and spermidine. Much higher concentrations of these amines were required to fully suppress ornithine decarboxylase activity in the transformed SV-3T3 cells than in the 3T3 fibroblasts. 2. Synthetic alpha omega-diamines with 3–12 carbon atoms also prevented the increase in ornithine decarboxylase activity induced by serum in these cells. The longer chain diamines were somewhat more potent than propane-1,3-diamine in this effect, but the synthetic diamines were less active than putrescine in the 3T3 cells. There was little difference between the responses of 3T3 and SV-3T3 cells to the synthetic diamines propane-1,3-diamine and heptane-1,7-diamine. 3. These results are discussed in relation to the control of polyamine synthesis in mammalian cells.


Author(s):  
Dale E. McClendon ◽  
Paul N. Morgan ◽  
Bernard L. Soloff

It has been observed that minute amounts of venom from the brown recluse spider, Loxosceles reclusa, are capable of producing cytotoxic changes in cultures of certain mammalian cells (Morgan and Felton, 1965). Since there is little available information concerning the effect of venoms on susceptible cells, we have attempted to characterize, at the electron microscope level, the cytotoxic changes produced by the venom of this spider.Cultures of human epithelial carcinoma cells, strain HeLa, were initiated on sterile, carbon coated coverslips contained in Leighton tubes. Each culture was seeded with approximately 1x105 cells contained in 1.5 ml of a modified Eagle's minimum essential growth medium prepared in Hank's balanced salt solution. Cultures were incubated at 36° C. for three days prior to the addition of venom. The venom was collected from female brown recluse spiders and diluted in sterile saline. Protein determinations on the venom-were made according to the spectrophotometric method of Waddell (1956). Approximately 10 μg venom protein per ml of fresh medium was added to each culture after discarding the old growth medium. Control cultures were treated similarly, except that no venom was added. All cultures were reincubated at 36° C.


Author(s):  
J. P. Petrali ◽  
E. J. Donati ◽  
L. A. Sternberger

Specific contrast is conferred to subcellular antigen by applying purified antibodies, exhaustively labeled with uranium under immunospecific protection, to ultrathin sections. Use of Seligman’s principle of bridging osmium to metal via thiocarbohydrazide (TCH) intensifies specific contrast. Ultrathin sections of osmium-fixed materials were stained on the grid by application of 1) thiosemicarbazide (TSC), 2) unlabeled specific antiserum, 3) uranium-labeled anti-antibody and 4) TCH followed by reosmication. Antigens to be localized consisted of vaccinia antigen in infected HeLa cells, lysozyme in monocytes of patients with monocytic or monomyelocytic leukemia, and fibrinogen in the platelets of these leukemic patients. Control sections were stained with non-specific antiserum (E. coli).In the vaccinia-HeLa system, antigen was localized from 1 to 3 hours following infection, and was confined to degrading virus, the inner walls of numerous organelles, and other structures in cytoplasmic foci. Surrounding architecture and cellular mitochondria were unstained. 8 to 14 hours after infection, antigen was localized on the outer walls of the viral progeny, on cytoplasmic membranes, and free in the cytoplasm. Staining of endoplasmic reticulum was intense and focal early, and weak and diffuse late in infection.


Sign in / Sign up

Export Citation Format

Share Document