Optical, X-Ray, and Electrical Measurements

Author(s):  
Daniil S. Tsiklis

1997 ◽  
Vol 482 ◽  
Author(s):  
Yu. V. Melnik ◽  
A. E. Nikolaev ◽  
S. I. Stepanov ◽  
A. S. Zubrilov ◽  
I. P. Nikitina ◽  
...  

AbstractGaN, AIN and AIGaN layers were grown by hydride vapor phase epitaxy. 6H-SiC wafers were used as substrates. Properties of AIN/GaN and AIGaN/GaN structures were investigated. AIGaN growth rate was about 1 μm/min. The thickness of the AIGaN layers ranged from 0.5 to 5 μm. The AIN concentration in AIGaN layers was varied from 9 to 67 mol. %. Samples were characterised by electron beam micro analysis, Auger electron spectroscopy, X-ray diffraction and cathodoluminescence.Electrical measurements performed on AIGaN/GaN/SiC samples indicated that undoped AIGaN layers are conducting at least up to 50 mol. % of AIN.



1992 ◽  
Vol 02 (02) ◽  
pp. 151-159
Author(s):  
LIU SHIJIE ◽  
WANG JIANG ◽  
HU ZAOHUEI ◽  
XIA ZHONGHUONG ◽  
GAO ZHIGIANG ◽  
...  

GaAs (100) crystals were implanted with 100 keV S+ to a dose of 3×1015 cm−2 in a nonchanneling direction at room temperature, and treated with rapid thermal annealing (RTA). He+ Rutherford backscattering and particle-induced X-ray emission in channeling mode in combination with transmission electron microscopy (TEM) were used to study the damage and the lattice location of S atoms. It is revealed that the RTA at 950 °C for 10 sec has resulted in a very good recovery of crystallinity with a few residual defects in the form of dislocation loops, and a very high substitutionality (~90%). The activation efficiency and the Hall mobility of the implanted samples are found to be low after the electrical measurements. Based on these results an extended dopant diffusion effect for the residual defects and a correlation between the electrical properties and defect complexes are suggested.



1988 ◽  
Vol 66 (5) ◽  
pp. 373-375 ◽  
Author(s):  
C. J. Arsenault ◽  
D. E. Brodie

Zn-rich and P-rich amorphous Zn3P2 thin films were prepared by co-evaporation of the excess element during the normal Zn3P2 deposition. X-ray diffraction techniques were used to investigate the structural properties and the crystallization process. Agglomeration of the excess element within the as-made amorphous Zn3P2 thin film accounted for the structural properties observed after annealing the sample. Electrical measurements showed that excess Zn reduces the conductivity activation energy and increases the conductivity, while excess P up to 15 at.% does not alter the electrical properties significantly.



2021 ◽  
Author(s):  
EMINE ALDIRMAZ ◽  
M. Güler ◽  
E. Güler

Abstract In this study, the Cu-23.37%Zn-13.73%Al-2.92%Mn (at.%) alloy was used. Phase identification was performed with the Scanning electron microscope (SEM), and energy-dispersive X-ray (EDX). We observed in the austenite phase in Cu-23.37%Zn-13.73%Al-2.92%Mn (at.%) alloy. To produce a new Schottky diode, CuZnAlMn alloy was exploited as a Schottky contact on p-type semiconductor silicon substrate. To calculate the characteristics of the produced diode, current-voltage (I-V), capacitance-voltage (C-V) and conductance-voltage (G-V) analyzes were taken at room temperature (300 K), in the dark and under various lights. Using electrical measurements, the diode's ideality factor (n), barrier height (Φb), and other diode parameters were calculated. Besides, the conductance / capacitance-voltage (G/C-V) characteristics of the diode were studied and in a wide frequency interval at room temperature. Also, the capacitance and conductance values strongly ​​ rely on the frequency. From the present experimental results, the obtained diode can be used for optoelectronic devices.



2003 ◽  
Vol 793 ◽  
Author(s):  
Arwyn L. E. Smalley ◽  
Brandon Howe ◽  
David C. Johnson

ABSTRACTA series of cerium-containing CoSb3 samples were synthesized, with cerium quantities varying from 0 to 2 stoichiometric equivalents. These samples were annealed at low temperatures to crystallize the kinetically stable phases CexCo4Sb12 (x = 0–0.5). X-ray diffraction showed that these samples were phase pure, and Rietveld analysis on x-ray diffraction data from powder samples indicated that these samples were 25–88% crystalline. Electrical measurements showed that these samples are n-type, which was previously unknown in CexCo4Sb12. Magnetic measurements showed that the samples were paramagnetic due to the cerium being incorporated into the diamagnetic CoSb3 compound. In addition, they contained a ferromagnetic component that was attributed to the amorphous, cerium-containing phase.



2015 ◽  
Vol 1131 ◽  
pp. 35-38
Author(s):  
Navaphun Kayunkid ◽  
Annop Chanhom ◽  
Chaloempol Saributr ◽  
Adirek Rangkasikorn ◽  
Jiti Nukeaw

This research is related to growth and characterizations of indium-doped pentacene thin films as a novel hybrid material. Doped films were prepared by thermal co-evaporation under high vacuum. The doping concentration was varied from 0% to 50% by controlling the different deposition rate between these two materials while the total thickness was fixed at 100 nm. The hybrid thin films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD) and UV-Visible spectroscopy to reveal the physical and optical properties. Moreover, the electrical properties of ITO/indium-doped-pentacene/Al devices i.e. charge mobility and carrier concentration were determined by considering the relationship between current-voltage and capacitance-voltage. AFM results identify that doping of indium into pentacene has an effect on surface properties of doped films i.e. the increase of surface grain size. XRD results indicate that doping of metal into pentacene has an effect on preferential orientation of pentacene’s crystalline domains. UV-Vis spectroscopy results show evolution of absorbance at photon energy higher than 2.7 eV corresponding to absorption from oxide of indium formed in the films. Electrical measurements exhibit higher conductivity in doped films resulting from increment of both charge carrier mobility and carrier concentration. Furthermore, chemical interactions taken place inside the doped films were investigated by x-ray photoelectron spectroscopy (XPS) in order to complete the remaining questions i.e. how do indium atoms interact with the neighbor molecules?, what is the origin of the absorption at E > 2.7 eV? Further results and discussions will be presented in the publication.



2002 ◽  
Vol 722 ◽  
Author(s):  
Chunming Jin ◽  
Ashutosh Tiwari ◽  
A. Kvit ◽  
J. Narayan

AbstractEpitaxial ZnO films have been grown on Si(111) substrates by employing a AlN buffer layer during a pulsed laser-deposition process. The epitaxial structure of AlN on Si(111) substrate provides a template for ZnO growth. The resultant films are evaluated by transmission electron microscopy, x-ray diffraction, and electrical measurements. The results of x-ray diffraction and electron microscopy on these films clearly show the epitaxial growth of ZnO films with an orientational relationship of ZnO[0001]||Aln[0001]||Si[111] along the growth direction and ZnO[2 11 0]||AlN[2 11 0]||Si[0 11] along the in-plane direction. High electrical conductivity (103 S/m at 300 K) and a linear I-V characteristics make these epitaxial films ideal for microelectronic, optoelectronic, and transparent conducting oxide applications.





2005 ◽  
Vol 19 (01n03) ◽  
pp. 651-653
Author(s):  
W. L. WANG ◽  
L. LI ◽  
K. J. LIAO ◽  
J. ZHANG ◽  
R. J. ZHANG ◽  
...  

The Magnetothermoelectric and thermoelectric power of nano- ZnO films was investigated. The ZnO films in this study were prepared by DC reactive sputtering using a Zn target (99.99%) containing AL of 1.5%. The films obtained were characterized by SEM, x-ray diffraction, optical and electrical measurements. It was found that the sputtering ZnO films were highly orientation growth with the c-axis perpendicular to the substrate surface. The measurements showed that there was a striking seebeck effect in the ZnO films, and their thermoelectric power was linearly increased with increasing temperature. The experimental results were also demonstrated that the thermoelectric power was degraded under the magnetic field. This finding may ascribe to the magneto resistive effect.



2002 ◽  
Vol 720 ◽  
Author(s):  
T.S. Kalkur ◽  
Woo-Chul Yi ◽  
Elliott Philofsky ◽  
Lee Kammerdine

AbstractMg- doped Ba0.96 Ca0.04 Ti0.84Zr0.16O3 (BCTZ) thin films were fabricated on Pt/MgO substrate by metallorganic decomposition method. The structure of the films were analyzed by x-ray diffraction. The electrical measurements were performed on metal-ferroelectric-metal capacitors with platinum as the top and bottom electrode. The dielectric properties were improved after the capacitors were post annealed at 700 °C in oxygen atmosphere for 30 min. A high dielectric constant of 504 and a dissipation factor of less than 4% was obtained at 1 MHz. The Pt/BCTZ/Pt/MgO capacitors exhibited high tunability of 55% at an applied field of 55 kV/cm.



Sign in / Sign up

Export Citation Format

Share Document