Genetic Analysis of Meristem Structure and Function in Arabidopsis Thaliana

Author(s):  
M. Kathryn Barton
Development ◽  
1998 ◽  
Vol 125 (7) ◽  
pp. 1217-1227 ◽  
Author(s):  
B.T. Kehl ◽  
K.O. Cho ◽  
K.W. Choi

The Drosophila notum, the dorsal body wall of the thorax, is subdivided genetically into longitudinal domains (Calleja, M., Moreno, E., Pelaz, S. and Morata, G. (1996) Science 274, 252–255). Two homeobox genes clustered in the iroquois complex, araucan and caupolican, regulate proneural genes and are required for development of sensory bristles in the lateral notum (Gomez-Skarmeta, J. L., del Corral, R. D., de la Calle-Mustienes, E., Ferres-Marco, D. and Modolell, J. (1996) Cell 85, 95–105). An iroquois-related homeobox gene, mirror, was recently isolated and is localized close to the iroquois complex region (McNeil, H., Yang, C.-H., Brodsky, M., Ungos, J. and Simon, M. A. (1997) Genes and Development 11, 1073–1082; this study). We show that mirror is required for the formation of the alula and a subset of sensory bristles in the lateral domain of the notum. Genetic analysis suggests that mirror and the other iroquois genes interact to form the alula as well as the sensory organs. Based on similarities between mirror and the iroquois genes in their genetic map positions, expression, protein structure and function, mirror is considered a new member of the iroquois complex and is involved in prepatterning sensory precursor cells in the lateral notum.


2020 ◽  
Vol 6 (1) ◽  
pp. 34
Author(s):  
Shangkun Qiu ◽  
Bin Zeng

Acyl-CoA-binding protein (ACBP) is an important protein with a size of about 10 kDa. It has a high binding affinity for C12–C22 acyl-CoA esters and participates in lipid metabolism. ACBP and its family of proteins have been found in all eukaryotes and some prokaryotes. Studies have described the function and structure of ACBP family proteins in mammals (such as humans and mice), plants (such as Oryza sativa, Arabidopsis thaliana, and Hevea brasiliensis) and yeast. However, little information on the structure and function of the proteins in filamentous fungi has been reported. This article concentrates on recent advances in the research of the ACBP family proteins in plants and mammals, especially in yeast, filamentous fungi (such as Monascus ruber and Aspergillus oryzae), and fungal pathogens (Aspergillus flavus, Cryptococcus neoformans). Furthermore, we discuss some problems in the field, summarize the binding characteristics of the ACBP family proteins in filamentous fungi and yeast, and consider the future of ACBP development.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1435
Author(s):  
Janardan Khadka ◽  
Anat Pesok ◽  
Gideon Grafi

Besides chemical modification of histone proteins, chromatin dynamics can be modulated by histone variants. Most organisms possess multiple genes encoding for core histone proteins, which are highly similar in amino acid sequence. The Arabidopsis thaliana genome contains 11 genes encoding for histone H2B (HTBs), 13 for H2A (HTAs), 15 for H3 (HTRs), and 8 genes encoding for histone H4 (HFOs). The finding that histone variants may be expressed in specific tissues and/or during specific developmental stages, often displaying specific nuclear localization and involvement in specific nuclear processes suggests that histone variants have evolved to carry out specific functions in regulating chromatin structure and function and might be important for better understanding of growth and development and particularly the response to stress. In this review, we will elaborate on a group of core histone proteins in Arabidopsis, namely histone H2B, summarize existing data, and illuminate the potential function of H2B variants in regulating chromatin structure and function in Arabidopsis thaliana.


1996 ◽  
Vol 22 (2-3) ◽  
pp. 111-114
Author(s):  
Hideaki Shiraishi ◽  
Yoshiro Shimura

2010 ◽  
Vol 21 (1) ◽  
pp. 55 ◽  
Author(s):  
A. J. Pittard ◽  
G. B. Cox

Frank Gibson died in Canberra on 11 July 2008. Frank was a highly distinguished research scientist who will be remembered for his pioneering studies in identifying the branch-point compound in the pathway of biosynthesis of a large number of important aromatic compounds followed by a detailed biochemical and genetic analysis of many of the pathways leading to the aromatic amino acids and the so-called aromatic vitamins. Studies on ubiquinone synthesis and function led to an examination of oxidative phosphorylation and the structure and function of the F1F0-ATPase in the bacterium Escherichia coli. This work resulted in the formulation of a highly innovative model, involving rotating subunits of the F0 segment within the membrane and offering an explanation for the mechanism linking proton flow and ATP synthesis.


Antioxidants ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 8 ◽  
Author(s):  
Aleksandra Lewandowska ◽  
Trung Nghia Vo ◽  
Thuy-Dung Ho Nguyen ◽  
Khadija Wahni ◽  
Didier Vertommen ◽  
...  

Members of the DJ-1 protein family are multifunctional enzymes whose loss increases the susceptibility of the cell to oxidative stress. However, little is known about the function of the plant DJ-1 homologs. Therefore, we analyzed the effect of oxidation on the structure and function of chloroplastic AtDJ-1B and studied the phenotype of T-DNA lines lacking the protein. In vitro oxidation of AtDJ-1B with H2O2 lowers its glyoxalase activity, but has no effect on its holdase chaperone function. Remarkably, upon oxidation, the thermostability of AtDJ-1B increases with no significant alteration of the overall secondary structure. Moreover, we found that AtDJ-1B transcript levels are invariable, and loss of AtDJ-1B does not affect plant viability, growth and stress response. All in all, two discrete functions of AtDJ-1B respond differently to H2O2, and AtDJ-1B is not essential for plant development under stress.


1991 ◽  
Vol 142 (7-8) ◽  
pp. 825-830 ◽  
Author(s):  
B.D. Green ◽  
G. Olmedo ◽  
P. Youngman

Sign in / Sign up

Export Citation Format

Share Document