Pharmacokinetics and Pharmacodynamics of Antibiotics in Biofilm Infections of Pseudomonas aeruginosa In Vitro and In Vivo

Author(s):  
Wang Hengzhuang ◽  
Niels Høiby ◽  
Oana Ciofu
2020 ◽  
Vol 8 (S1) ◽  
Author(s):  
Tamara Merz ◽  
Nicole Denoix ◽  
Martin Wepler ◽  
Holger Gäßler ◽  
David A. C. Messerer ◽  
...  

AbstractThis review addresses the plausibility of hydrogen sulfide (H2S) therapy for acute lung injury (ALI) and circulatory shock, by contrasting the promising preclinical results to the present clinical reality. The review discusses how the narrow therapeutic window and width, and potentially toxic effects, the route, dosing, and timing of administration all have to be balanced out very carefully. The development of standardized methods to determine in vitro and in vivo H2S concentrations, and the pharmacokinetics and pharmacodynamics of H2S-releasing compounds is a necessity to facilitate the safety of H2S-based therapies. We suggest the potential of exploiting already clinically approved compounds, which are known or unknown H2S donors, as a surrogate strategy.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 401
Author(s):  
Pauline Nogaret ◽  
Fatima El El Garah ◽  
Anne-Béatrice Blanc-Potard

The opportunistic human pathogen Pseudomonas aeruginosa is responsible for a variety of acute infections and is a major cause of mortality in chronically infected cystic fibrosis patients. Due to increased resistance to antibiotics, new therapeutic strategies against P. aeruginosa are urgently needed. In this context, we aimed to develop a simple vertebrate animal model to rapidly assess in vivo drug efficacy against P. aeruginosa. Zebrafish are increasingly considered for modeling human infections caused by bacterial pathogens, which are commonly microinjected in embryos. In the present study, we established a novel protocol for zebrafish infection by P. aeruginosa based on bath immersion in 96-well plates of tail-injured embryos. The immersion method, followed by a 48-hour survey of embryo viability, was first validated to assess the virulence of P. aeruginosa wild-type PAO1 and a known attenuated mutant. We then validated its relevance for antipseudomonal drug testing by first using a clinically used antibiotic, ciprofloxacin. Secondly, we used a novel quorum sensing (QS) inhibitory molecule, N-(2-pyrimidyl)butanamide (C11), the activity of which had been validated in vitro but not previously tested in any animal model. A significant protective effect of C11 was observed on infected embryos, supporting the ability of C11 to attenuate in vivo P. aeruginosa pathogenicity. In conclusion, we present here a new and reliable method to compare the virulence of P. aeruginosa strains in vivo and to rapidly assess the efficacy of clinically relevant drugs against P. aeruginosa, including new antivirulence compounds.


2021 ◽  
pp. 088532822110038
Author(s):  
Mohammad Yousef Memar ◽  
Mina Yekani ◽  
Hadi Ghanbari ◽  
Edris Nabizadeh ◽  
Sepideh Zununi Vahed ◽  
...  

The aims of the present study were the determination of antimicrobial and antibiofilm effects of meropenem-loaded mesoporous silica nanoparticles (MSNs) on carbapenem resistant Pseudomonas aeruginosa ( P. aeruginosa) and cytotoxicity properties in vitro. The meropenem-loaded MSNs had shown antibacterial and biofilm inhibitory activities on all isolates at different levels lower than MICs and BICs of meropenem. The viability of HC-04 cells treated with serial concentrations as MICs and BICs of meropenem-loaded MSNs was 92–100%. According to the obtained results, meropenem-loaded MSNs display the significant antibacterial and antibiofilm effects against carbapenem resistant and biofilm forming P. aeruginosa and low cell toxicity in vitro. Then, the prepared system can be an appropriate option for the delivery of carbapenem for further evaluation in vivo assays.


2019 ◽  
Vol 202 (8) ◽  
Author(s):  
Courtney E. Price ◽  
Dustin G. Brown ◽  
Dominique H. Limoli ◽  
Vanessa V. Phelan ◽  
George A. O’Toole

ABSTRACT Cystic fibrosis (CF) patients chronically infected with both Pseudomonas aeruginosa and Staphylococcus aureus have worse health outcomes than patients who are monoinfected with either P. aeruginosa or S. aureus. We showed previously that mucoid strains of P. aeruginosa can coexist with S. aureus in vitro due to the transcriptional downregulation of several toxic exoproducts typically produced by P. aeruginosa, including siderophores, rhamnolipids, and HQNO (2-heptyl-4-hydroxyquinoline N-oxide). Here, we demonstrate that exogenous alginate protects S. aureus from P. aeruginosa in both planktonic and biofilm coculture models under a variety of nutritional conditions. S. aureus protection in the presence of exogenous alginate is due to the transcriptional downregulation of pvdA, a gene required for the production of the iron-scavenging siderophore pyoverdine as well as the downregulation of the PQS (Pseudomonas quinolone signal) (2-heptyl-3,4-dihydroxyquinoline) quorum sensing system. The impact of exogenous alginate is independent of endogenous alginate production. We further demonstrate that coculture of mucoid P. aeruginosa with nonmucoid P. aeruginosa strains can mitigate the killing of S. aureus by the nonmucoid strain of P. aeruginosa, indicating that the mechanism that we describe here may function in vivo in the context of mixed infections. Finally, we investigated a panel of mucoid clinical isolates that retain the ability to kill S. aureus at late time points and show that each strain has a unique expression profile, indicating that mucoid isolates can overcome the S. aureus-protective effects of mucoidy in a strain-specific manner. IMPORTANCE CF patients are chronically infected by polymicrobial communities. The two dominant bacterial pathogens that infect the lungs of CF patients are P. aeruginosa and S. aureus, with ∼30% of patients coinfected by both species. Such coinfected individuals have worse outcomes than monoinfected patients, and both species persist within the same physical space. A variety of host and environmental factors have been demonstrated to promote P. aeruginosa-S. aureus coexistence, despite evidence that P. aeruginosa kills S. aureus when these organisms are cocultured in vitro. Thus, a better understanding of P. aeruginosa-S. aureus interactions, particularly mechanisms by which these microorganisms are able to coexist in proximal physical space, will lead to better-informed treatments for chronic polymicrobial infections.


1985 ◽  
Vol 15 (suppl A) ◽  
pp. 201-206 ◽  
Author(s):  
A. U. Gerber ◽  
C. Feller-Segessenmann

2005 ◽  
Vol 187 (2) ◽  
pp. 554-566 ◽  
Author(s):  
Lauren M. Mashburn ◽  
Amy M. Jett ◽  
Darrin R. Akins ◽  
Marvin Whiteley

ABSTRACT Pseudomonas aeruginosa is a gram-negative opportunistic human pathogen often infecting the lungs of individuals with the heritable disease cystic fibrosis and the peritoneum of individuals undergoing continuous ambulatory peritoneal dialysis. Often these infections are not caused by colonization with P. aeruginosa alone but instead by a consortium of pathogenic bacteria. Little is known about growth and persistence of P. aeruginosa in vivo, and less is known about the impact of coinfecting bacteria on P. aeruginosa pathogenesis and physiology. In this study, a rat dialysis membrane peritoneal model was used to evaluate the in vivo transcriptome of P. aeruginosa in monoculture and in coculture with Staphylococcus aureus. Monoculture results indicate that approximately 5% of all P. aeruginosa genes are differentially regulated during growth in vivo compared to in vitro controls. Included in this analysis are genes important for iron acquisition and growth in low-oxygen environments. The presence of S. aureus caused decreased transcription of P. aeruginosa iron-regulated genes during in vivo coculture, indicating that the presence of S. aureus increases usable iron for P. aeruginosa in this environment. We propose a model where P. aeruginosa lyses S. aureus and uses released iron for growth in low-iron environments.


2017 ◽  
Vol 46 (1) ◽  
pp. 335-347 ◽  
Author(s):  
Yu-xing Fei ◽  
Tian-hong Zhang ◽  
Jing Zhao ◽  
He Ren ◽  
Ya-nan Du ◽  
...  

Objective To investigate the effect of hypothermia on the pharmacokinetics and pharmacodynamics of nimodipine in rabbits using in vivo and in vitro methods. Methods Five healthy New Zealand rabbits received a single dose of nimodipine (0.5 mg/kg) intravenously under normothermic and hypothermic conditions. Doppler ultrasound was used to monitor cerebral blood flow, vascular resistance, and heart rate. In vitro evaluations of protein binding, hepatocyte uptake and intrinsic clearance of liver microsomes at different temperatures were also conducted. Results Plasma concentrations of nimodipine were significantly higher in hypothermia than in normothermia. Nimodipine improved cerebral blood flow under both conditions, but had a longer effective duration during the hypothermic period. Low temperature decreased the intrinsic clearance of liver microsomes, with no change in protein binding or hepatocyte uptake of nimodipine. Conclusion Nimodipine is eliminated at a slower rate during hypothermia than during normothermia, mainly due to the decreased activity of cytochrome P450 enzymes. This results in elevated system exposure with little enhancement in pharmacological effect.


2004 ◽  
Vol 186 (20) ◽  
pp. 6983-6998 ◽  
Author(s):  
Aneta A. Bartosik ◽  
Krzysztof Lasocki ◽  
Jolanta Mierzejewska ◽  
Christopher M. Thomas ◽  
Grazyna Jagura-Burdzy

ABSTRACT The par genes of Pseudomonas aeruginosa have been studied to increase the understanding of their mechanism of action and role in the bacterial cell. Key properties of the ParB protein have been identified and are associated with different parts of the protein. The ParB- ParB interaction domain was mapped in vivo and in vitro to the C-terminal 56 amino acids (aa); 7 aa at the C terminus play an important role. The dimerization domain of P. aeruginosa ParB is interchangeable with the dimerization domain of KorB from plasmid RK2 (IncP1 group). The C-terminal part of ParB is also involved in ParB-ParA interactions. Purified ParB binds specifically to DNA containing a putative parS sequence based on the consensus sequence found in the chromosomes of Bacillus subtilis, Pseudomonas putida, and Streptomyces coelicolor. The overproduction of ParB was shown to inhibit the function of genes placed near parS. This “silencing” was dependent on the parS sequence and its orientation. The overproduction of P. aeruginosa ParB or its N-terminal part also causes inhibition of the growth of P. aeruginosa and P. putida but not Escherichia coli cells. Since this inhibitory determinant is located well away from ParB segments required for dimerization or interaction with the ParA counterpart, this result may suggest a role for the N terminus of P. aeruginosa ParB in interactions with host cell components.


Sign in / Sign up

Export Citation Format

Share Document