scholarly journals nRIP-seq: A Technique to Identify RNA Targets of an RNA Binding Protein on a Genome-Wide Scale

Author(s):  
Jing Crystal Zhao
2012 ◽  
Vol 14 (3) ◽  
pp. 318-328 ◽  
Author(s):  
Britt Adamson ◽  
Agata Smogorzewska ◽  
Frederic D. Sigoillot ◽  
Randall W. King ◽  
Stephen J. Elledge

2015 ◽  
Vol 112 (15) ◽  
pp. E1888-E1897 ◽  
Author(s):  
Xing Chang ◽  
Bin Li ◽  
Anjana Rao

Posttranscriptional regulation is a major mechanism to rewire transcriptomes during differentiation. Heterogeneous nuclear RNA-binding protein LL (hnRNPLL) is specifically induced in terminally differentiated lymphocytes, including effector T cells and plasma cells. To study the molecular functions of hnRNPLL at a genome-wide level, we identified hnRNPLL RNA targets and binding sites in plasma cells through integrated Photoactivatable-Ribonucleoside-Enhanced Cross-Linking and Immunoprecipitation (PAR-CLIP) and RNA sequencing. hnRNPLL preferentially recognizes CA dinucleotide-containing sequences in introns and 3′ untranslated regions (UTRs), promotes exon inclusion or exclusion in a context-dependent manner, and stabilizes mRNA when associated with 3′ UTRs. During differentiation of primary B cells to plasma cells, hnRNPLL mediates a genome-wide switch of RNA processing, resulting in loss of B-cell lymphoma 6 (Bcl6) expression and increased Ig production—both hallmarks of plasma-cell maturation. Our data identify previously unknown functions of hnRNPLL in B-cell to plasma-cell differentiation and demonstrate that the RNA-binding protein hnRNPLL has a critical role in tuning transcriptomes of terminally differentiating B lymphocytes.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Ti-Chun Chao ◽  
Qiong Zhang ◽  
Zhonghan Li ◽  
Shashi Kant Tiwari ◽  
Yue Qin ◽  
...  

ABSTRACT A major challenge in finding a cure for HIV-1/AIDS is the difficulty in identifying and eradicating persistent reservoirs of replication-competent provirus. Long noncoding RNAs (lncRNAs, >200 nucleotides) are increasingly recognized to play important roles in pathophysiology. Here, we report the first genome-wide expression analysis of lncRNAs in HIV-1-infected primary monocyte-derived macrophages (MDMs). We identified an lncRNA, which we named HIV-1-enhanced lncRNA (HEAL), that is upregulated by HIV-1 infection of MDMs, microglia, and T lymphocytes. Peripheral blood mononuclear cells of HIV-1-infected individuals show elevated levels of HEAL. Importantly, HEAL is a broad enhancer of multiple HIV-1 strains because depletion of HEAL inhibited X4, R5, and dual-tropic HIV replications and the inhibition was rescued by HEAL overexpression. HEAL forms a complex with the RNA-binding protein FUS, which facilitates HIV replication through at least two mechanisms: (i) HEAL-FUS complex binds the HIV promoter and enhances recruitment of the histone acetyltransferase p300, which positively regulates HIV transcription by increasing histone H3K27 acetylation and P-TEFb enrichment on the HIV promoter, and (ii) HEAL-FUS complex is enriched at the promoter of the cyclin-dependent kinase 2 gene, CDK2, to enhance CDK2 expression. Notably, HEAL knockdown and knockout mediated by RNA interference (RNAi) and CRISPR-Cas9, respectively, prevent HIV-1 recrudescence in T cells and microglia upon cessation of azidothymidine treatment in vitro. Our results suggest that silencing of HEAL or perturbation of the HEAL-FUS ribonucleoprotein complex could provide a new epigenetic silencing strategy to eradicate viral reservoirs and effect a cure for HIV-1/AIDS. IMPORTANCE Despite our increased understanding of the functions of lncRNAs, their potential to develop HIV/AIDS cure strategies remains unexplored. A genome-wide analysis of lncRNAs in HIV-1-infected primary monocyte-derived macrophages (MDMs) was performed, and 1,145 differentially expressed lncRNAs were identified. An lncRNA named HIV-1-enhanced lncRNA (HEAL) is upregulated by HIV-1 infection and promotes HIV replication in T cells and macrophages. HEAL forms a complex with the RNA-binding protein FUS to enhance transcriptional coactivator p300 recruitment to the HIV promoter. Furthermore, HEAL knockdown and knockout prevent HIV-1 recrudescence in T cells and microglia upon cessation of azidothymidine treatment, suggesting HEAL as a potential therapeutic target to cure HIV-1/AIDS.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Eric P van der Veer

The post-transcriptional events that enable monocytes to home to sites of vascular injury, and subsequently differentiate into macrophages within atherosclerotic lesions are poorly understood. We discovered that the mRNA and protein levels of the RNA-binding protein Quaking (QKI) are augmented in CD14+ myeloid cells extracted from advanced human atherosclerotic plaques (4.2-fold upregulated vs. early lesions; p<0.01). This prompted us to investigate how the RNA-binding properties of QKI could influence monocyte fate. Our approach was to examine, at a genome-wide level, how altering the expression levels of QKI could impact pre-mRNA splicing, expression, and localization upon differentiation of human monocytes into Mf. For this, we employed both array-based gene expression analyses as well as next-generation sequencing techniques (RNA-seq) of THP-1 monocytic cells as well as CD14+ monocytes derived from the peripheral blood of a unique, QKI haploinsufficient subject (with sibling control). Despite low expression levels of QKI in monocytes, the abrogation of QKI in these cells perturbed cellular adhesion and the ensuing establishment of the cytoskeletal architecture. Interestingly, our investigation of post-transcriptional events that are associated with the conversion of the monocyte to a macrophage, uncovered: 1) 536 alternative splicing events (p<0.05) that are directly mediated by binding of QKI proximal to the splice site (QBS)(Fig. 1A); and 2) 1214 differentially expressed genes (minimally +/- 1.5-fold; p<0.05) that indicate that QKI modulates monocyte activation and differentiation by regulating inflammation, cell growth and survival, RNA editing and lipid metabolism via activation of the LXR/RXR pathway (Fig. 1B). Collectively, our data illustrate the post-transcriptional events that drive monocyte to macrophage differentiation, and identify the RNA-binding protein QKI as an orchestrator of this inflammatory response.


2021 ◽  
Vol 53 (2) ◽  
pp. 166-173
Author(s):  
Christopher Y. Park ◽  
Jian Zhou ◽  
Aaron K. Wong ◽  
Kathleen M. Chen ◽  
Chandra L. Theesfeld ◽  
...  

Gene ◽  
2019 ◽  
Vol 686 ◽  
pp. 177-186 ◽  
Author(s):  
Yan Lu ◽  
Jian Sun ◽  
Zhengmei Yang ◽  
Chenxu Zhao ◽  
Mingku Zhu ◽  
...  

2015 ◽  
Vol 27 (12) ◽  
pp. 3294-3308 ◽  
Author(s):  
Denghui Xing ◽  
Yajun Wang ◽  
Michael Hamilton ◽  
Asa Ben-Hur ◽  
Anireddy S.N. Reddy

2016 ◽  
Vol 12 (2) ◽  
pp. 532-540 ◽  
Author(s):  
Pritha Ghosh ◽  
R. Sowdhamini

We have classified the existing RNA-binding protein (RBP) structures into different structural families. Here, we report ∼2600 proteins with RBP signatures in humans.


Author(s):  
Kausik Bishayee ◽  
Khadija Habib ◽  
Uddin Md. Nazim ◽  
Jieun Kang ◽  
Aniko Szabo ◽  
...  

Abstract Background Neuronal-origin HuD (ELAVL4) is an RNA binding protein overexpressed in neuroblastoma (NB) and certain other cancers. The RNA targets of this RNA binding protein in neuroblastoma cells and their role in promoting cancer survival have been unexplored. In the study of modulators of mTORC1 activity under the conditions of optimal cell growth and starvation, the role of HuD and its two substrates were studied. Methods RNA immunoprecipitation/sequencing (RIP-SEQ) coupled with quantitative real-time PCR were used to identify substrates of HuD in NB cells. Validation of the two RNA targets of HuD was via reverse capture of HuD by synthetic RNA oligoes from cell lysates and binding of RNA to recombinant forms of HuD in the cell and outside of the cell. Further analysis was via RNA transcriptome analysis of HuD silencing in the test cells. Results In response to stress, HuD was found to dampen mTORC1 activity and allow the cell to upregulate its autophagy levels by suppressing mTORC1 activity. Among mRNA substrates regulated cell-wide by HuD, GRB-10 and ARL6IP1 were found to carry out critical functions for survival of the cells under stress. GRB-10 was involved in blocking mTORC1 activity by disrupting Raptor-mTOR kinase interaction. Reduced mTORC1 activity allowed lifting of autophagy levels in the cells required for increased survival. In addition, ARL6IP1, an apoptotic regulator in the ER membrane, was found to promote cell survival by negative regulation of apoptosis. As a therapeutic target, knockdown of HuD in two xenograft models of NB led to a block in tumor growth, confirming its importance for viability of the tumor cells. Cell-wide RNA messages of these two HuD substrates and HuD and mTORC1 marker of activity significantly correlated in NB patient populations and in mouse xenografts. Conclusions HuD is seen as a novel means of promoting stress survival in this cancer type by downregulating mTORC1 activity and negatively regulating apoptosis.


Sign in / Sign up

Export Citation Format

Share Document