Profiling Specific Inner Ear Cell Types Using Cell Sorting Techniques

Author(s):  
Taha A. Jan ◽  
Lina Jansson ◽  
Patrick J. Atkinson ◽  
Tian Wang ◽  
Alan G. Cheng
Keyword(s):  
2018 ◽  
Vol 92 (1-2) ◽  
pp. 1-31 ◽  
Author(s):  
Christine Köppl ◽  
Viviane Wilms ◽  
Ian John Russell ◽  
Hans Gerd Nothwang

The ear of extant vertebrates reflects multiple independent evolutionary trajectories. Examples include the middle ear or the unique specializations of the mammalian cochlea. Another striking difference between vertebrate inner ears concerns the differences in the magnitude of the endolymphatic potential. This differs both between the vestibular and auditory part of the inner ear as well as between the auditory periphery in different vertebrates. Here we provide a comparison of the cellular and molecular mechanisms in different endorgans across vertebrates. We begin with the lateral line and vestibular systems, as they likely represent plesiomorphic conditions, then review the situation in different vertebrate auditory endorgans. All three systems harbor hair cells bathed in a high (K+) environment. Superficial lateral line neuromasts are bathed in an electrogenically maintained high (K+) microenvironment provided by the complex gelatinous cupula. This is associated with a positive endocupular potential. Whether this is a special or a universal feature of lateral line and possibly vestibular cupulae remains to be discovered. The vestibular system represents a closed system with an endolymph that is characterized by an enhanced (K+) relative to the perilymph. Yet only in land vertebrates does (K+) exceed (Na+). The endolymphatic potential ranges from +1 to +11 mV, albeit we note intriguing reports of substantially higher potentials of up to +70 mV in the cupula of ampullae of the semicircular canals. Similarly, in the auditory system, a high (K+) is observed. However, in contrast to the vestibular system, the positive endolymphatic potential varies more substantially between vertebrates, ranging from near zero mV to approximately +100 mV. The tissues generating endolymph in the inner ear show considerable differences in cell types and location. So-called dark cells and the possibly homologous ionocytes in fish appear to be the common elements, but there is always at least one additional cell type present. To inspire research in this field, we propose a classification for these cell types and discuss potential evolutionary relationships. Their molecular repertoire is largely unknown and provides further fertile ground for future investigation. Finally, we propose that the ultimate selective pressure for an increased endolymphatic potential, as observed in mammals and to a lesser extent in birds, is specifically to maintain the AC component of the hair-cell receptor potential at high frequencies. In summary, we identify intriguing questions for future directions of research into the molecular and cellular basis of the endolymph in the different compartments of the inner ear. The answers will provide important insights into evolutionary and developmental processes in a sensory organ essential to many species, including humans.


1998 ◽  
Vol 95 (19) ◽  
pp. 11400-11405 ◽  
Author(s):  
S. Heller ◽  
C. A. Sheane ◽  
Z. Javed ◽  
A. J. Hudspeth

1994 ◽  
Vol 266 (1) ◽  
pp. F76-F80 ◽  
Author(s):  
A. Naray-Fejes-Toth ◽  
E. Rusvai ◽  
G. Fejes-Toth

Aldosterone exerts complex effects on the cortical collecting duct (CCD): it increases Na+ and K+ transport, and it also influences H+ and HCO3 transport. Whether these latter effects represent direct action of aldosterone on intercalated cells (ICC) or are secondary to changes in the transport of other electrolytes is unclear. Because the presence of specific receptors is the prerequisite of a direct steroid action, and mineralocorticoid receptors (MR) have not yet been demonstrated in ICC, in this study we determined the density of MR directly in isolated principal cells (PC) and beta-ICC. Purified populations of these two cell types were obtained from rabbit renal cortex by immunodissection and fluorescence-activated cell sorting. We found that both PC and beta-ICC contained a significant number of MR, although receptor density was higher in PC than in beta-ICC (6,704 +/- 912 vs. 2,181 +/- 388 MR sites/cell; P < 0.001). 11 beta-Hydroxysteroid dehydrogenase (11 beta-OHSD), an enzyme that is present predominantly in mineralocorticoid target cells, exhibited a distribution similar to that of MR in the two cell types. 11 beta-OHSD activity, determined by measuring the rate of conversion of [3H]corticosterone to 11-dehydrocorticosterone, was 1.08 +/- 0.14 and 0.34 +/- 0.08 fmol.min-1 x 1,000 cells-1 (P < 0.001) in intact PC and beta-ICC, respectively. 11 beta-OHSD in both cell types utilized NAD as cofactor. These results suggest that beta-ICC are potential direct targets of aldosterone and that MR in both PC and beta-ICC are protected by 11 beta-OHSD.


2019 ◽  
Vol 286 (1895) ◽  
pp. 20182495 ◽  
Author(s):  
Christopher Revell ◽  
Raphael Blumenfeld ◽  
Kevin J. Chalut

Many biological processes, including tissue morphogenesis, are driven by cell sorting. However, the primary mechanical drivers of sorting in multicellular aggregates (MCAs) remain controversial, in part because there is no appropriate computational model to probe mechanical interactions between cells. To address this important issue, we developed a three-dimensional, local force-based simulation based on the subcellular element method. In our method, cells are modelled as collections of locally interacting force-bearing elements. We use the method to investigate the effects of tension and cell–cell adhesion on MCA sorting. We predict a minimum level of adhesion to produce inside-out sorting of two cell types, which is in excellent agreement with observations in several developmental systems. We also predict the level of tension asymmetry needed for robust sorting. The generality and flexibility of the method make it applicable to tissue self-organization in a myriad of other biological processes, such as tumorigenesis and embryogenesis.


1990 ◽  
Vol 126 (2) ◽  
pp. 269-274 ◽  
Author(s):  
D. Wynick ◽  
R. Critchley ◽  
M. S. Venetikou ◽  
J. M. Burrin ◽  
S. R. Bloom

ABSTRACT As the secretory granules of anterior pituitary cells fuse with the cell surface, there would appear to be sufficient hormone present on the cell surface to be labelled by polyclonal hormone antibodies and thus analysed by flow cytometry. We have therefore applied fluorescence-activated cell sorting to these labelled pituitary cells. Percentage purity and depletion of other cell types was assessed by immunocytochemistry and the reverse haemolytic plaque assay (RHPA). Results demonstrate that fluorescence-activated cell sorting allows almost complete purification of functional lactotrophs and somatotrophs to 96·7 ±1·7 (s.e.m.)% and 98±1·0% respectively by immunocytochemistry, and to 95·8 ±1·1% and 97±0·8% respectively by RHPA. Depletion of other anterior pituitary cell types to less than 2% was demonstrated by both immunocytochemistry and RHPA. Fluorescence-activated cell sorting to this degree of purity was routinely possible with cell yields of 91 ±3·4%. To obtain such purity/depletion, it was necessary to use specific antisera of high titre, at concentrations which ensured maximal cell-surface labelling associated with maximal stimulation of hormonal secretion by the appropriate hypothalamic stimulatory factor. Separating cells on the basis of the intensity of prolactin cell-surface labelling demonstrated a low level of binding of the prolactin antibody to gonadotrophs (but not of sufficient fluorescence intensity to be sorted into the prolactin enriched population), raising the possibility of prolactin receptors on gonadotrophs. We were unable to demonstrate the presence of mammosomatotrophs in the normal female rat, since purified lactotrophs did not contain or secrete GH nor did purified somatotrophs contain or secrete prolactin. Journal of Endocrinology (1990) 126, 269–274


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1378
Author(s):  
Philipp Rossbach ◽  
Hans-Joachim Böhme ◽  
Steffen Lange ◽  
Anja Voss-Böhme

The process of cell-sorting is essential for development and maintenance of tissues. Mathematical modeling can provide the means to analyze the consequences of different hypotheses about the underlying mechanisms. With the Differential Adhesion Hypothesis, Steinberg proposed that cell-sorting is determined by quantitative differences in cell-type-specific intercellular adhesion strengths. An implementation of the Differential Adhesion Hypothesis is the Differential Migration Model by Voss-Böhme and Deutsch. There, an effective adhesion parameter was derived analytically for systems with two cell types, which predicts the asymptotic sorting pattern. However, the existence and form of such a parameter for more than two cell types is unclear. Here, we generalize analytically the concept of an effective adhesion parameter to three and more cell types and demonstrate its existence numerically for three cell types based on in silico time-series data that is produced by a cellular-automaton implementation of the Differential Migration Model. Additionally, we classify the segregation behavior using statistical learning methods and show that the estimated effective adhesion parameter for three cell types matches our analytical prediction. Finally, we demonstrate that the effective adhesion parameter can resolve a recent dispute about the impact of interfacial adhesion, cortical tension and heterotypic repulsion on cell segregation.


2019 ◽  
Author(s):  
Kevin Shengyang Yu ◽  
Stacey M. Frumm ◽  
Jason S. Park ◽  
Katharine Lee ◽  
Daniel M. Wong ◽  
...  

SummaryHearing loss is a common and disabling condition, yet our understanding of the physiologic workings of the inner ear has been limited by longstanding difficulty characterizing the function and characteristics of the many diverse, fragile, and rare cell types in the cochlea. Using single-cell RNA-sequencing and a novel clustering algorithm, CellFindR, we created a developmental map of the mouse and human cochlea, identifying multiple previously undescribed cell types, progenitor populations, and predicted lineage relationships. We additionally associated the expression of known hearing loss genes to the cell types and developmental timepoints in which they are expressed. This work will serve as a resource for understanding the molecular basis of hearing and designing therapeutic approaches for hearing restoration.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Aleta R. Steevens ◽  
Matthew W. Griesbach ◽  
Yun You ◽  
James R. Dutton ◽  
Walter C. Low ◽  
...  

AbstractThis research is the first to produce induced pluripotent stem cell-derived inner ear sensory neurons in the Neurog1+/− heterozygote mouse using blastocyst complementation. Additionally, this approach corrected non-sensory deficits associated with Neurog1 heterozygosity, indicating that complementation is specific to endogenous Neurog1 function. This work validates the use of blastocyst complementation as a tool to create novel insight into the function of developmental genes and highlights blastocyst complementation as a potential platform for generating chimeric inner ear cell types that can be transplanted into damaged inner ears to improve hearing.


2018 ◽  
Vol 30 (1) ◽  
pp. 240
Author(s):  
E. K. Tomgorova ◽  
E. N. Antonova ◽  
N. A. Volkova ◽  
P. Y. Volchkov ◽  
N. A. Zinovieva

Primordial germ cells (PGC) are the precursors of male and female progenitor cells. The cells are considered a valuable genetic material for the production of transgenic poultry. This technology includes isolation of the PGC from chick donor embryos, transformation of the cells, and injection into the dorsal aorta of recipient embryos. After injection, the PGC are involved in the process of embryo development and differentiate into male or female sex cells. The aim of the research was to optimize the individual stages of this technology to increase the efficiency of transgenesis. The PGC were extracted from embryo gonads at stage 26 to 27 (H&H) using the trypsinization process. The trypsin concentration and incubation time were determined experimentally. Treatment of chick embryos with a 0.05% trypsin solution for 5 min was optimal for obtaining culture of embryonic cells. Separation of the PGC from other types of embryonic cells was based on a differential adhesive capacity. The maximum homogeneity of the cell population for further cultivation was established by transfer (twice) of the supernatant containing unattached cells after 1 h of cultivation in a new culture dish. The cell population is represented mainly by the PGC (81 ± 4%). Additional purification of the PGC from other cell types using magnetic-activated cell sorting (MACS) increased the proportion of these cells up to 93 ± 2%. The lentiviral transduction (pHAGE vector, ZsGreen under CMV promotor) was used to transform the resulting culture of the PGC. The efficiency of infection of PGC with lentiviral particles (TU/mL = 2.5 × 108) was 70 ± 3%. The transformed cells were injected into the dorsal aorta of recipient embryos on Day 2.5 (n = 80). Before injecting donor PGC, recipient embryos were treated with busulfan to remove the endogenous PGC. The optimal dose of busulfan was selected experimentally. A series of experiments introducing busulfan in concentrations from 50 to 250 μg into chick embryos at 24 h of incubation showed that the optimal dose was 100 μg/embryo. The efficacy of colonization of gonads with donor PGC was assessed on Day-10 embryos (n = 32) and 4-week-old hatched chickens (n = 12). Cells from gonads were studied using fluorescence microscopy, fluorescence-activated cell sorting (FACS) and qPCR. The presence of fluorescent cells in the gonads of recipients was established in both embryos and hatched chickens. The relative number of the recombinant DNA copies and the relative level of expression were confirmed by qPCR. The FACS analysis of sex cells isolated from gonads of recipients showed that the percentage of transformed germ cells reached 55.8% in females (n = 5) and 31.9% in males (n = 7). Thus, the effectiveness of poultry transgenesis can be enhanced by preparation of donor PGC for injection into embryo recipients and elimination of endogenous PGC in recipients. Both the purification of PGC from other cell types based on adhesive capacity as well as treatment of embryo recipients at 24 h incubation with busulfan (100 μg/embryo) increased the effectiveness of transgenesis. Study supported by the RSF within project No. 16-16-10059.


Sign in / Sign up

Export Citation Format

Share Document