Use of Superfused Synaptosomes to Understand the Role of Receptor–Receptor Interactions as Integrative Mechanisms in Nerve Terminals from Selected Brain Region

Author(s):  
Sarah Beggiato ◽  
Sergio Tanganelli ◽  
Tiziana Antonelli ◽  
Maria Cristina Tomasini ◽  
Kjell Fuxe ◽  
...  
1989 ◽  
Vol 257 (4) ◽  
pp. R765-R770 ◽  
Author(s):  
K. T. Nakamura ◽  
J. M. Klinkefus ◽  
F. G. Smith ◽  
T. Sato ◽  
J. E. Robillard

The role of renal nerves and norepinephrine release on renin secretion during fetal and postnatal maturation has not been studied. Experiments were performed to determine the effect of veratridine, a substance known to promote norepinephrine release from nerve terminals, on active and inactive renin secretion from renal cortical slices of fetal (134-138 days gestation; term is 145 days), newborn (4-9 days of age), and adult nonpregnant sheep. Veratridine (10-300 microM) significantly increased active renin secretion and produced a small but nonsignificant rise in inactive renin secretion in all three groups of animals (P less than 0.05). The percent rise in active renin secretion during veratridine stimulation was similar among all groups. Veratridine-stimulated (300 microM) active renin secretion was antagonized by tetrodotoxin (0.5 and 5.0 microM) and DL-propranolol (1 microM) in fetal renal cortical slices. However, neither tetrodotoxin nor propranolol completely inhibited the stimulatory effect of veratridine on active renin secretion. These results suggest that 1) norepinephrine released from nerve terminals may regulate active renin secretion early during development; 2) the effect of veratridine on active renin secretion was similar in fetal, newborn, and adult sheep; 3) veratridine had no significant effect on inactive renin secretion; and 4) active renin secretion due to depolarization of nerve terminals in fetal sheep is dependent on activation of beta-adrenoceptors as it is in adults.


1996 ◽  
Vol 93 (1) ◽  
pp. 331-335 ◽  
Author(s):  
C. David ◽  
P. S. McPherson ◽  
O. Mundigl ◽  
P. de Camilli

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Linbang Wang ◽  
Tao He ◽  
Jingkun Liu ◽  
Jiaojiao Tai ◽  
Bing Wang ◽  
...  

Abstract Background Tumor-associated macrophages (TAMs) are abundant in the tumor microenvironment (TME). However, their contribution to the immunosuppressive status of the TME remains unclear. Methods We integrated single-cell sequencing and transcriptome data from different tumor types to uncover the molecular features of TAMs. In vitro experiments and prospective clinical tests confirmed the results of these analysis. Results We first detected intra- and inter-tumoral heterogeneities between TAM subpopulations and their functions, with CD86+ TAMs playing a crucial role in tumor progression. Next, we focused on the ligand-receptor interactions between TAMs and tumor cells in different TME phenotypes and discovered that aberrant expressions of six hub genes, including FLI1, are involved in this process. A TAM-tumor cell co-culture experiment proved that FLI1 was involved in tumor cell invasion, and FLI1 also showed a unique pattern in patients. Finally, TAMs were discovered to communicate with immune and stromal cells. Conclusion We determined the role of TAMs in the TME by focusing on their communication pattern with other TME components. Additionally, the screening of hub genes revealed potential therapeutic targets.


1987 ◽  
Vol 252 (6) ◽  
pp. C595-C603 ◽  
Author(s):  
S. Sanchez-Armass ◽  
M. P. Blaustein

Ca efflux from rat brain presynaptic nerve terminals (synaptosomes) was examined after loading the terminals with 45Ca during a brief depolarization, usually in media containing 20 microM Ca labeled with 45Ca, to assure a small (physiological) load. Efflux of 45Ca was very slow in the absence of external Na and Ca (approximately 0.5% of the load/s) and was greatly accelerated by Na and/or Ca (presumably Na+-Ca2+ and Ca2+-Ca2+ exchange, respectively). The dependence of 45Ca efflux on external Na was sigmoid, with a Hill coefficient of approximately 2.5; this implies that more than two external Na ions are required to activate the efflux of one Ca ion. The external Na (Nao)-dependent Ca efflux was inhibited by 1 mM external La, by low temperature (Q10 congruent to 2.3), and by raising external K (to depolarize the synaptosomes). With small Ca loads, the mitochondrial uncoupler, carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), had negligible effect on either Ca uptake or efflux; with large loads (greater than or equal to 5 nmol/mg protein), however, FCCP reduced the depolarization-stimulated Ca uptake and increased the Nao-dependent Ca efflux. These effects may be attributed to reduction of mitochondrial Ca sequestration. Mitochondria do not appear to sequester much Ca when the loads are smaller (and more physiological). Estimations of Ca efflux indicate that approximately 20% of a small 45Ca load (approximately 0.75 nmol Ca/mg protein) may be extruded via Na+-Ca2+ exchange within 1 s; this corresponds to a net Ca efflux of approximately 110 pmol Ca X mg protein-1 X s-1.(ABSTRACT TRUNCATED AT 250 WORDS)


2017 ◽  
Vol 40 ◽  
pp. 116-124 ◽  
Author(s):  
Sarah Beggiato ◽  
Andrea Celeste Borelli ◽  
Dasiel Borroto-Escuela ◽  
Ilaria Corbucci ◽  
Maria Cristina Tomasini ◽  
...  

1963 ◽  
Vol 16 (2) ◽  
pp. 323-359 ◽  
Author(s):  
David S. Smith

The organization of the luminescent organ of an adult firefly has been studied with the electron microscope, and particular attention has been given to the disposition of nerve terminals within the organ. The cytological structure of the cells of the tracheal system, the peripheral and terminal axons, the photocytes and the cells of the dorsal ("reflecting") layer is described. Previous observations on the peripheral course of nerve branches alongside the tracheal trunks at the level of the dorsal layer and photocyte epithelium have been confirmed, and specialised nerve endings containing axoplasmic components structurally identical with "synaptic vesicles" and "neurosecretory droplets" have been identified, not in association with the surface of the photocytes, but lying between the apposed surfaces of two components of the tracheal epithelium: the tracheal end-cell and the tracheolar cell. These cytological findings are discussed in terms of available biochemical and physiological evidence concerning the mechanism of light emission in the firefly, especially with respect to the possible role of chemical "transmitter" action in triggering a response in a luminescent effector system.


2020 ◽  
Vol 117 (37) ◽  
pp. 22690-22697 ◽  
Author(s):  
M. R. W. Scheepers ◽  
L. J. van IJzendoorn ◽  
M. W. J. Prins

Targeted drug delivery critically depends on the binding selectivity of cargo-transporting colloidal particles. Extensive theoretical work has shown that two factors are necessary to achieve high selectivity for a threshold receptor density: multivalency and weak interactions. Here, we study a model system of DNA-coated particles with multivalent and weak interactions that mimics ligand–receptor interactions between particles and cells. Using an optomagnetic cluster experiment, particle aggregation rates are measured as a function of ligand and receptor densities. The measured aggregation rates show that the binding becomes more selective for shorter DNA ligand–receptor pairs, proving that multivalent weak interactions lead to enhanced selectivity in interparticle binding. Simulations confirm the experimental findings and show the role of ligand–receptor dissociation in the selectivity of the weak multivalent binding.


2000 ◽  
pp. 115-142 ◽  
Author(s):  
Rashmin Savani ◽  
Darius Bagli ◽  
Rene Harrison ◽  
Eva Turley

Langmuir ◽  
2008 ◽  
Vol 24 (18) ◽  
pp. 10324-10333 ◽  
Author(s):  
Gabriel S. Longo ◽  
David H. Thompson ◽  
I. Szleifer

Sign in / Sign up

Export Citation Format

Share Document