Genetic and Biochemical Analyses of Yeast ESCRT

Author(s):  
Sudeep Banjade ◽  
Shaogeng Tang ◽  
Scott D. Emr
Keyword(s):  
Author(s):  
D. C. Brindley ◽  
M. McGill

Morphological and cytochemical studies of platelets have reported a surface coat, or glycocalyx, external to the plasma membrane (1). Biochemical analyses have likewise confirmed the highly adsorptive properties of platelets as transporters of coagulation factors (2). However, visualization of the platelet membrane by conventional EM procedures does not reflect this special relationship between the platelet and its plasma environment. By the routine method of alcohol-propylene oxide dehydration for Epon embedding, the lipid bilayer nature of the platelet membrane appears similar to other blood cells (Fig. 1). A new rapid embedding technique using dimethoxypropane (DMP) as dehydrating agent (13) has permitted ultrastructural analyses of the surface features of the platelet-plasma interface.Aliquots of human or rabbit platelet-rich plasma (PRP) were added to equal volumes of 6% glutaraldehyde in Millonig's buffer at 37° for 45 minutes, rinsed in buffer and postfixed in 1% osmium in Millonig's buffer for 45 minutes.


Author(s):  
S.M. Geyer ◽  
C.L. Mendenhall ◽  
J.T. Hung ◽  
E.L. Cardell ◽  
R.L. Drake ◽  
...  

Thirty-three mature male Holtzman rats were randomly placed in 3 treatment groups: Controls (C); Ethanolics (E); and Wine drinkers (W). The animals were fed synthetic diets (Lieber type) with ethanol or wine substituted isocalorically for carbohydrates in the diet of E and W groups, respectively. W received a volume of wine which provided the same gram quantity of alcohol consumed by E. The animals were sacrificed by decapitation after 6 weeks and the livers processed for quantitative triglycerides (T3), proteins, malic enzyme activity (MEA), light microscopy (LM) and electron microscopy (EM). Morphometric analysis of randomly selected LM and EM micrographs was performed to determine organellar changes in centrilobular (CV) and periportal (PV) regions of the liver. This analysis (Table 1) showed that hepatocytes from E were larger than those in C and W groups. Smooth endoplasmic reticulum decreased in E and increased in W compared to C values.


2013 ◽  
Vol 10 (6) ◽  
pp. 515-521 ◽  
Author(s):  
Atia-tul- Wahab ◽  
Ajmal Khan ◽  
Bishnu P. Marasini ◽  
M. Arif Lodhi ◽  
Atta-ur- Rahman ◽  
...  

2019 ◽  
Vol 14 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Maryam Farzaneh ◽  
Fatemeh Rahimi ◽  
Masoumeh Alishahi ◽  
Seyed E. Khoshnam

Cardiovascular disease (CVD) is one of the world-wide healthcare problem that involves the heart or blood vessels. CVD includes myocardial infarction and coronary artery diseases (CAD). Dysfunctional myocardial cells are leading causes of low cardiac output or ventricular dysfunction after cardiac arrest and may contribute to the progression of CVD which could not generate new cardiomyocytes in human adult heart. The mesenchymal stem cells (MSCs) which are present in adult marrow can self-renew and have the capacity of differentiation into multiple types of cells including cardiomyocytes. Recent biochemical analyses greatly revealed that several regulators of MSCs, such as HGF, PDGF, Wnt, and Notch-1 signaling pathways have been shown to be involved in the proliferation and differentiation into cardiomyocytes. Preclinical studies are paving the way for further applications of MSCs in the repair of myocardial infarction. In this study, we discuss and summarize the paracrine mechanisms involved in MSCs differentiation into cardiomyocytes.


2021 ◽  
Vol 22 (11) ◽  
pp. 5912
Author(s):  
Patricia Alvarez-Sieiro ◽  
Hendrik R. Sikkema ◽  
Bert Poolman

Many proteins have a multimeric structure and are composed of two or more identical subunits. While this can be advantageous for the host organism, it can be a challenge when targeting specific residues in biochemical analyses. In vitro splitting and re-dimerization to circumvent this problem is a tedious process that requires stable proteins. We present an in vivo approach to transform homodimeric proteins into apparent heterodimers, which then can be purified using two-step affinity-tag purification. This opens the door to both practical applications such as smFRET to probe the conformational dynamics of homooligomeric proteins and fundamental research into the mechanism of protein multimerization, which is largely unexplored for membrane proteins. We show that expression conditions are key for the formation of heterodimers and that the order of the differential purification and reconstitution of the protein into nanodiscs is important for a functional ABC-transporter complex.


2021 ◽  
Author(s):  
Luojiang Huang ◽  
Kai Hua ◽  
Ran Xu ◽  
Dali Zeng ◽  
Ruci Wang ◽  
...  

Abstract Panicle size and grain number are important agronomic traits and influence grain yield in rice (Oryza sativa), but the molecular and genetic mechanisms underlying panicle size and grain number control remain largely unknown in crops. Here we report that LARGE2 encodes a HECT-domain E3 ubiquitin ligase OsUPL2 and regulates panicle size and grain number in rice. The loss of function large2 mutants produce large panicles with increased grain number, wide grains and leaves, and thick culms. LARGE2 regulates panicle size and grain number by repressing meristematic activity. LARGE2 is highly expressed in young panicles and grains. Biochemical analyses show that LARGE2 physically associates with ABERRANT PANICLE ORGANIZATION1 (APO1) and APO2, two positive regulators of panicle size and grain number, and modulates their stabilities. Genetic analyses support that LARGE2 functions with APO1 and APO2 in a common pathway to regulate panicle size and grain number. These findings reveal a novel genetic and molecular mechanism of the LARGE2-APO1/APO2 module-mediated control of panicle size and grain number in rice, suggesting that this module is a promising target for improving panicle size and grain number in crops.


Genetics ◽  
1981 ◽  
Vol 97 (3-4) ◽  
pp. 607-623 ◽  
Author(s):  
J B Boyd ◽  
M D Golino ◽  
K E S Shaw ◽  
C J Osgood ◽  
M M Green

ABSTRACT A total of 34 third chromosomes of Drosophila melanogaster that render homozygous larvae hypersensitive to killing by chemical mutagens have been isolated. Genetic analyses have placed responsible mutations in more than eleven complementation groups. Mutants in three complementation groups are strongly sensitive to methyl methanesulfonate, those in one are sensitive to nitrogen mustard, and mutants in six groups are hypersensitive to both mutagens. Eight of the ten loci mapped fall within 15% of the genetic map that encompasses the centromere of chromosome 3. Mutants from four of the complementation groups are associated with moderate to strong meiotic effects in females. Preliminary biochemical analyses have implicated seven of these loci in DNA metabolism.


Sign in / Sign up

Export Citation Format

Share Document