Cancer Stem Cells: Concepts, Challenges, and Opportunities for Cancer Therapy

Author(s):  
May Yin Lee ◽  
Rajshekhar R. Giraddi ◽  
Wai Leong Tam
Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2168
Author(s):  
Balawant Kumar ◽  
Rizwan Ahmad ◽  
Swagat Sharma ◽  
Saiprasad Gowrikumar ◽  
Mark Primeaux ◽  
...  

Background: Despite recent advances in therapies, resistance to chemotherapy remains a critical problem in the clinical management of colorectal cancer (CRC). Cancer stem cells (CSCs) play a central role in therapy resistance. Thus, elimination of CSCs is crucial for effective CRC therapy; however, such strategies are limited. Autophagy promotes resistance to cancer therapy; however, whether autophagy protects CSCs to promote resistance to CRC-therapy is not well understood. Moreover, specific and potent autophagy inhibitors are warranted as clinical trials with hydroxychloroquine have not been successful. Methods: Colon cancer cells and tumoroids were used. Fluorescent reporter-based analysis of autophagy flux, spheroid and side population (SP) culture, and qPCR were done. We synthesized 36-077, a potent inhibitor of PIK3C3/VPS34 kinase, to inhibit autophagy. Combination treatments were done using 5-fluorouracil (5-FU) and 36-077. Results: The 5-FU treatment induced autophagy only in a subset of the treated colon cancer. These autophagy-enriched cells also showed increased expression of CSC markers. Co-treatment with 36-077 significantly improved efficacy of the 5-FU treatment. Mechanistic studies revealed that combination therapy inhibited GSK-3β/Wnt/β-catenin signaling to inhibit CSC population. Conclusion: Autophagy promotes resistance to CRC-therapy by specifically promoting GSK-3β/Wnt/β-catenin signaling to promote CSC survival, and 36-077, a PIK3C3/VPS34 inhibitor, helps promote efficacy of CRC therapy.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Kristen Abernathy ◽  
Jeremy Burke

Despite improvements in cancer therapy and treatments, tumor recurrence is a common event in cancer patients. One explanation of recurrence is that cancer therapy focuses on treatment of tumor cells and does not eradicate cancer stem cells (CSCs). CSCs are postulated to behave similar to normal stem cells in that their role is to maintain homeostasis. That is, when the population of tumor cells is reduced or depleted by treatment, CSCs will repopulate the tumor, causing recurrence. In this paper, we study the application of the CSC Hypothesis to the treatment of glioblastoma multiforme by immunotherapy. We extend the work of Kogan et al. (2008) to incorporate the dynamics of CSCs, prove the existence of a recurrence state, and provide an analysis of possible cancerous states and their dependence on treatment levels.


2012 ◽  
Vol 1826 (2) ◽  
pp. 385-399 ◽  
Author(s):  
Jun Xia ◽  
Changjie Chen ◽  
Zhiwen Chen ◽  
Lucio Miele ◽  
Fazlul H. Sarkar ◽  
...  

Oncogenesis ◽  
2015 ◽  
Vol 4 (11) ◽  
pp. e177-e177 ◽  
Author(s):  
A Borah ◽  
S Raveendran ◽  
A Rochani ◽  
T Maekawa ◽  
D S Kumar

Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1798 ◽  
Author(s):  
Mariarosaria Negri ◽  
Annalisa Gentile ◽  
Cristina de Angelis ◽  
Tatiana Montò ◽  
Roberta Patalano ◽  
...  

Increasing interest in studying the role of vitamin D in cancer has been provided by the scientific literature during the last years, although mixed results have been reported. Vitamin D deficiency has been largely associated with various types of solid and non-solid human cancers, and the almost ubiquitous expression of vitamin D receptor (VDR) has always led to suppose a crucial role of vitamin D in cancer. However, the association between vitamin D levels and the risk of solid cancers, such as colorectal, prostate and breast cancer, shows several conflicting results that raise questions about the use of vitamin D supplements in cancer patients. Moreover, studies on vitamin D supplementation do not always show improvements in tumor progression and mortality risk, particularly for prostate and breast cancer. Conversely, several molecular studies are in agreement about the role of vitamin D in inhibiting tumor cell proliferation, growth and invasiveness, cell cycle arrest and inflammatory signaling, through which vitamin D may also regulate cancer microenvironment through the activation of different molecular pathways. More recently, a role in the regulation of cancer stem cells proliferation and short non-coding microRNA (miRNAs) expression has emerged, conferring to vitamin D a more crucial role in cancer development and progression. Interestingly, it has been shown that vitamin D is able not only to potentiate the effects of traditional cancer therapy but can even contribute to overcome the molecular mechanisms of drug resistance—often triggering tumor-spreading. At this regard, vitamin D can act at various levels through the regulation of growth of cancer stem cells and the epithelial–mesenchymal transition (EMT), as well as through the modulation of miRNA gene expression. The current review reconsiders epidemiological and molecular literature concerning the role of vitamin D in cancer risk and tumor development and progression, as well as the action of vitamin D supplementation in potentiating the effects of drug therapy and overcoming the mechanisms of resistance often triggered during cancer therapies, by critically addressing strengths and weaknesses of available data from 2010 to 2020.


Sign in / Sign up

Export Citation Format

Share Document